Замечание

Простая ионообменная теория стеклянного электрода

На поверхности стекла протекает ионообменная реакция:

 $H^+_{\text{ стекло}} \Leftrightarrow H^+_{\text{ раствор}}$

В условиях равновесия можно записать равенство электрохимических потенциалов протонов в стекле и растворе:

Анализируемый раствор

Гидратирован-

ный слой

стекло

 $0.1 \text{ mm} (10^{5} \text{ nm})$

cyxoe

стекло

Раствор

внутреннего заполнения

Гидратирован-

ный. слой

 $\overline{\mu}_{H^{+}\text{стекло}} = \overline{\mu}_{H^{+}\text{раствор}}$ Отсюда получим выражение для потенциала:

$$\Delta \phi = \phi_{\text{стекло}} - \phi_{\text{раствор}} = \phi^{\circ} + (\text{RT/F}) \ln(a_{\text{H+раствор}}/a_{\text{H+стекло}})$$

В условиях присутствия в растворе мешающих ионов (Me⁺) на поверхности стекла устанавливается равновесие как по \mathbf{H}^+ , так и по \mathbf{Me}^+ :

 $H^{+}_{\text{стекло}} \Leftrightarrow H^{+}_{\text{раствор}}$ $Me^{+}_{\text{стекло}} \Leftrightarrow Me^{+}_{\text{раствор}}$

Для обеих равновесий можно записать

$$\Delta \phi = \phi_{\text{стекло}} - \phi_{\text{раствор}} = \phi_{\text{H+}}^{\circ} + (\text{RT/F}) \ln(a_{\text{H+раствор}}/a_{\text{H+стекло}})$$
 $\Delta \phi = \phi_{\text{стекло}} - \phi_{\text{раствор}} = \phi_{\text{Me+}}^{\circ} + (\text{RT/F}) \ln(a_{\text{Me+pactBop}}/a_{\text{Me+ct.}})$
Можно также записать следующее ионообменное равновесие:

$$H^{+}_{\text{стекло}} + Me^{+}_{\text{раствор}} \Leftrightarrow H^{+}_{\text{раствор}} + Me^{+}_{\text{стекло}}$$

Между поверхностным слоем и раствором устанавливается ионобменное равновесие (рассмотрим случай однозарядных ионов)

$$H^+(ct.) + Me^+(p-p) \Leftrightarrow Me^+(ct.) + H^+(p-p)$$

Закон действия масс (з.д.м.) для равновесия:

$$K_{H-M} = \frac{a_H a_M^{cm}}{a_M a_H^{cm}}$$

Разность электрических потенциалов между стеклом и раствором $\Delta \varphi = \varphi^{\text{ст.}} - \varphi^{\text{p-p}}$

определяется химической работой переноса ионов из стекла в раствор.

$$\Delta \varphi = \varphi_{H}^{0} + S \lg (a_{H}/a_{H-ct.}) = \varphi_{Me}^{0} + S \lg (a_{Me}/a_{Me-ct.})$$

S = 2,303·R·T/F; φ^0 – стандартные значения потенциалов.

Активности ионов H⁺и Me⁺ в стекле равны их общим концентрациям

$$a_H = N_H;$$
 $a_{Me} = N_{Me}$

Отсюда константа обмена запишется:

$$K = a_H N_{Me}/a_{Me} N_H;$$

Суммарная концентрация ионов H⁺ и Me⁺ в стекле равна постоянной величине – концентрации фиксированных ионов N₀:

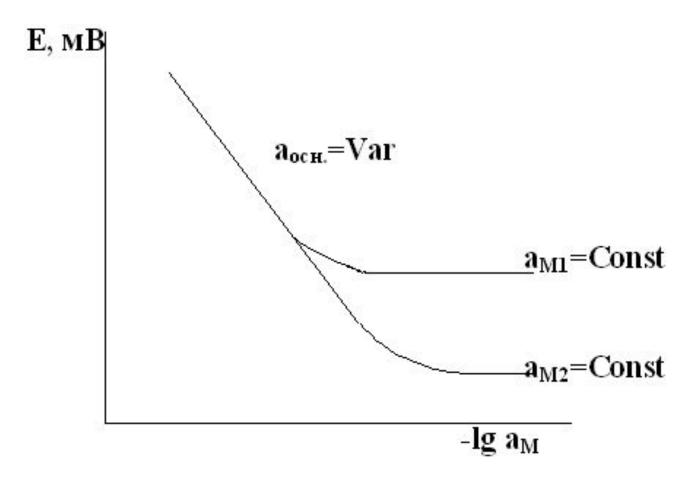
$$N_H + N_{Me} = N_0$$

Из уравнения для з.д.м. получим:

$$\frac{a_{H}}{N_{H}} = K_{H-Me} \frac{a_{Me}}{N_{Me}} = \frac{a_{H} + K_{H-Me} a_{Me}}{N_{H} + N_{Me}} = \frac{a_{H} + K_{H-Me} a_{Me}}{N_{0}}$$

$$\boldsymbol{\varphi} = \boldsymbol{\varphi}^{0cm.} + S \lg \frac{a_H}{N_V} = \boldsymbol{\varphi}^0 + S \lg (a_H + K_{H-Me} a_{Me})$$

Уравнение Никольского в общем виде


$$E = E^{0} + 2,303 \frac{RT}{z_{i}F} \lg(a_{i} + K_{ij}a_{j}^{z_{i}/z_{j}})$$

План лекции 5

- 1. Методы определения коэффициентов селективности
- 2. Виды ионоселективных электродов и их селективность
- 3. «Электронный нос» и «электронный язык»
- 4. Потенциометрия в определении физико-химических характеристик растворов электролитов
- 5. Методы потенциометрии.
 - Прямое определение концентрации и активности ионов.
 - Определение рН. Принятая процедура инструментального определения рН. Стандарты рН.
 - Определение pD. Стандарты pD.
 - Титрование. Виды кривых титрования; способы определения точки эквивалентности: метод параллелограмма; дифференциальная кривая титрования; вторая производная.
 - Метод добавок
- 6. Потенциометрия в определении ионных и молекулярных веществ. Особенности применения. Достоинства и недостатки.
- 7. Применение потенциометрии в неводных средах.

Методы определения коэффициентов селективности

1. Метод постоянной концентрации мешающего иона или метод смешанных растворов.

1a) Вариант метода смешанных растворов. Используется, когда коэффициенты селективности имеют небольшие значения:

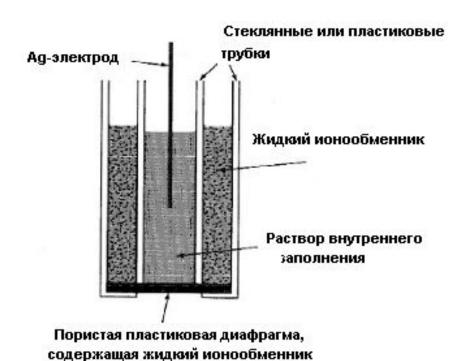
$$K_{ij} = \frac{10^{\Delta E/S} - 1}{a_j / a_i}, \quad \partial e \quad \Delta E = E_2 - E_1$$

2. Метод раздельных растворов

В этом методе сначала измеряют потенциал ИСЭ в растворе основного иона E₁. Затем измеряют потенциал в растворе мешающего иона E₂. Величину коэффициента селективности оценивают по уравнению:

$$\lg K_{ij}^{nom.} = \frac{E_2 - E_1}{S} - (1 + \frac{z_i}{z_j}) \lg a_i, \ npu \ a_i = a_j$$

Электроды с др. стеклянными и кристаллическими (и поликристаллическими) мембранами


В качестве мембран используются

- стекла различных типов:
 - 1. силикатные $[SiO_{4/2}]$ $[SiO_{3/2}]$ OM, M ионообменный центр;
 - 2. стекла на основе оскида бора;
 - 3. фосфатные стекла;
 - халькогенидные стекла;
- соли:
- 1. фториды щелочноземельных или редкоземельных металлов (CaF₂, LaF₃);
- 2. галогениды металлов MHal, (M=Ag, Pb, Hg, Tl);
- 3. халькогениды металлов $M_x Xal_y (M=Ag, Pb, Hg, Cu, Cd, Zn; Hal=S, Se, Te);$ 4. $Ag_x A_y (A=SCN^-, N^{3-}, CrO_4^{2-}, PO_4^{3-}, Hal, Xal);$

5. Ag₂S+MX (X=Hal, Xal).

Электроды с жидкими ионообменниками

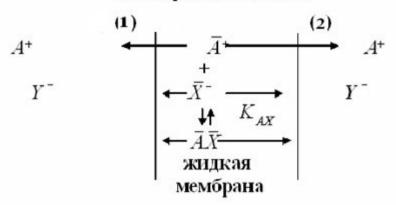
2, 3

1 — мембрана на основе ПВХ; 2 — графитовый компаунд; 3 — металлический токоотвод; 4 — внешняя изоляция монтажного провода. Состав мембраны (вес. %): ПВХ 24,1—25,3; ДОФ 73,4—74,1; (С₁₀Н₂₁)₄N[AuCl₄] 0,58—25,3.

Электрод типа «coated-wire»

Электроды с жидкими ионообменниками

Основные типы мембран электродов


- 1) На основе жидких ионообменников (типа Aliquat-336, крупный гидрофобный катион R_4N^+ и гидрофильный ион: Cl^- , NO_3^- , SCN^- и др.)
- 2) На основе нейтральных переносчиков (валиномицин, нонактин и др. циклические краун-эфиры к Li^+ , Na^+ , K^+ , $NH_{_{A}}^{\ +}$ и др.)
- 3) На основе комплексообразователей (моно- и биядерные фталоцианины, поданды и каликс[n]арены для различных анионов)

ИСЭ с пластифицированными мембранами

Вариант жидкостных мембран реализуется в виде пластифицированных поливинилхлоридных мембран. ПВХ играет роль инертного связующего (матрицы). Жидкий ионообменник вводится внутрь ПВХ матрицы. Для этого используются растворители, которые хорошо растворяют как ПВХ, так и ионообменник. После смешения и гомогенизации системы растворитель упаривают. Мембрана может принимать любую заданную форму.

Мембраны на основе жидких ионообменников

Мембранная система

 A^+, \overline{A}^+ - противоионы, находятся и в растворе и в мембране \overline{X}^- - активные группы, находятся только в мембране, Y^- коионы, $\overline{A}\overline{X}$ - подвижная ионная пара.

Выражение для мембранного потенциала

$$\varphi_{M} = \frac{RT}{z_{A}F} \ln \frac{\sum_{i} a_{i}^{(1)} u_{i} k_{i}}{\sum_{i} a_{i}^{(2)} u_{i} k_{i}}$$

і = А, В, С и т.д.

Об электродном поведении мембранных ИСЭ. Матрица коэффициентов селективности.

	UO ₂ ²⁺	Cu ²⁺	Cd ²⁺	Ca ²⁺	Co ²⁺	Ni ²⁺
UO ₂ ²⁺	1	0.037	0.00056	0.00067	0.00059	0.00012
Cu ²⁺	0.0019	1	0.0084	0.0054	0.017	0.0019
Cd ²⁺	-	-	1	-	-	-
Ca ²⁺	-	-	-	1	-	-
Co ²⁺	-	-	-	-	1	-
Ni ²⁺	1.1	2.2	9.3	3.0	1.7	1

Соотношения между коэффициентами:

1)
$$K_{ij} = K_{ji}^{-1}$$
; 2) $K_{kj} / K_{lj} = K_{kl}$; 3) $K_{ip} / K_{ir} = K_{rp}$ Восстановление матрицы по первой строке приводит к результату:

	UO ₂ ²⁺	Cu ²⁺	Cd ²⁺	Ca ²⁺	Co ²⁺	Ni ²⁺
UO ₂ ²⁺	1	0.037	0.00056	0.00067	0.00059	0.00012
Cu ²⁺	27	1	0.015	0.018	0.016	0.0032
Cd ²⁺	1786	66	1	1.2	1.05	0.21
Ca ²⁺	1493	55	0.84	1	0.88	0.18
Co ²⁺	1695	63	0.95	1.14	1	0.20
Ni ²⁺	8330	308	4.6	5.6	4.9	1

	UO ₂ ²⁺	Cu ²⁺	Cd ²⁺	Ca ²⁺	Co ²⁺	Ni ²⁺
UO ₂ ²⁺	1	0.037	0.00056	0.00067	0.00059	0.00012
Cu ²⁺	27	1	0.015	0.018	0.016	0.0032
Cd ²⁺	1786	66	1	1.2	1.05	0.21
Ca ²⁺	1493	55	0.84	1	0.88	0.18
Co ²⁺	1695	63	0.95	1.14	1	0.20
Ni ²⁺	8330	308	4.6	5.6	4.9	1

Соотношения между коэффициентами:

1)
$$K_{ij} = K_{ji}^{-1}$$
; 2) $K_{kj} / K_{lj} = K_{kl}$; 3) $K_{ip} / K_{ir} = K_{rp}$

Обозначения: первый индекс при коэффициенте (\boldsymbol{K}_{ij}) – строка (\boldsymbol{i}), второй индекс – столбец (**j**).

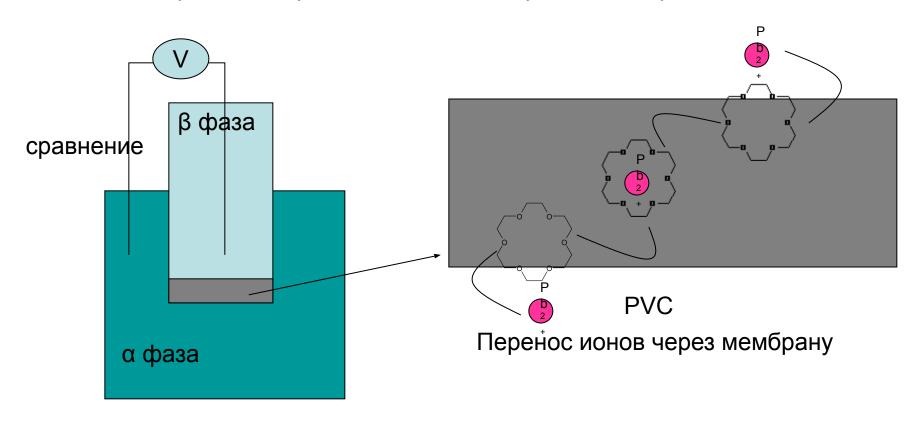
Примеры:

1)
$$K_{ii} = K_{ii}^{-1}$$
; $K_{12} = K_{21}^{-1}$; 0,037=1/27

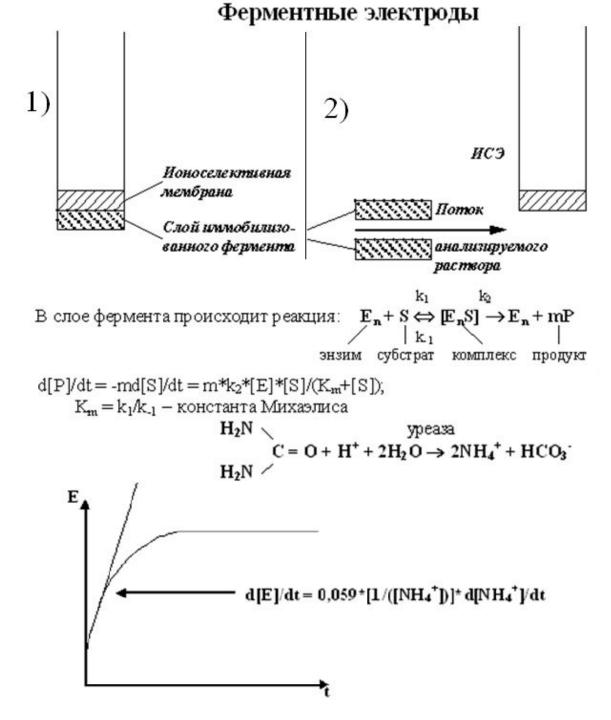
2)
$$K'_{ki} / K'_{li} = K_{kl} / K_{11} / K_{21} = K_{12} / 1/27 = 0.037$$

1)
$$K_{ij} = K_{ji}^{-1}$$
; $K_{12} = K_{21}^{-1}$; 0,037=1/27
2) $K_{kj} / K_{lj} = K_{kl}^{-1}$; $K_{11} / K_{21} = K_{12}^{-1}$; 1/27=0,037
3) $K_{ip} / K_{ir} = K_{rp}$; $K_{11} / K_{12} = K_{21}^{-1}$; 1/0,037=27

Коэффициенты селективности	KAB	ИСЭ	C	разными	солями	ΓK	B	мембране	
----------------------------	-----	-----	---	---------	--------	----	---	----------	--

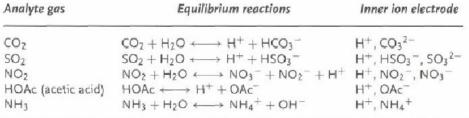

Соль АХ в			Катион B ⁺ в анализируемом растворе										
мембране в скобках n _c (#)		H Bus N+	He Su ₃ N ⁺	8+34,N+	Sr. 343 N+	Buy N+	i-Am Bu3N+	n-Am Bu3N+	Hex Bus N +	Hept Bus N+	i-£m4N+	i-fm n-fm3N+	n- £my N+
H Bu ₃ NJ	(I2)	I,00	I,6	2,6	8,5	22	41	82	350	II50	490	I340	1700
BU4 NJ	(16)	0,04	0,05	O,II	0,29	I,00	2,0	3,4	I3,5	52	24	91	I30
Buy NB Phy	(16)	0,04	0,07	0,14	0,31	I,00	I,9	3,0	12,3	42	22	76	IIO
Hex Bus NJ	(I8)	0,001	0,001	0,007	0,02	0,07	0,13	0,26	I,00	4,00	I,5	5,0	7,8
i- Emy NBPh	(20)	0,001	0,003	0,006	0,01	0,06	0,14	0,13	0,69	1,8	I,00	1,4	2,4
n-Amy NBPhy	(20)	10-3	0,001	0,002	0,003	0,006	0,01	0,02	0,08	0,26	0,20	0,85	I,00
$n_c(B)$		I2	I3	14	15	16	17	I7	I8	19	20	20	20

Продолжение таблицы

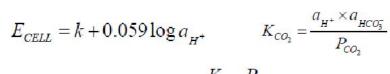

		Buy 9+	i. Am Bus P	i-Amz Bu P*	i-Amy D+
Buy NJ	(16)	2,6	6,5	24,5	55,5
nc(3)		16	17	19	20

Нейтральные переносчики

Полимерная мембрана на основе нейтрального переносчика

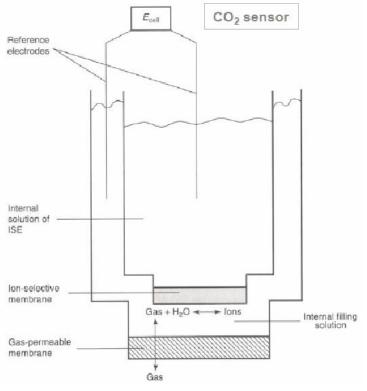


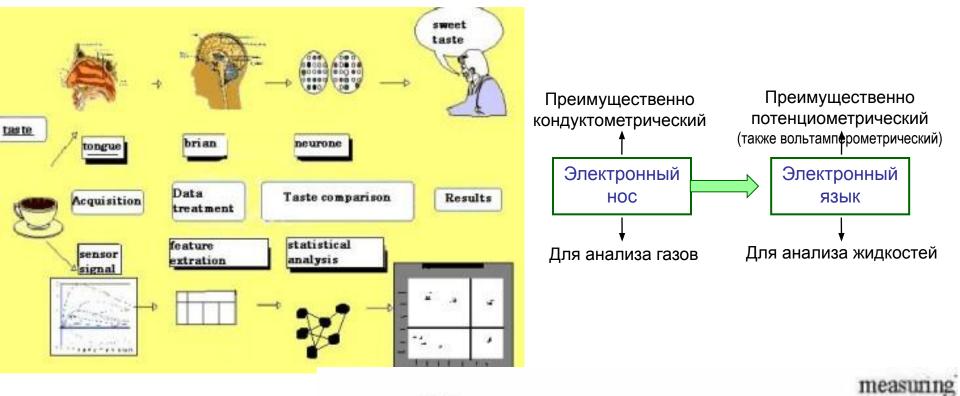
$$K_{IJ}^{pot} = \frac{k_J}{k_I} \frac{1 + \beta_{JL} c_{L,J}}{1 + \beta_{IL} c_{L,J}}$$



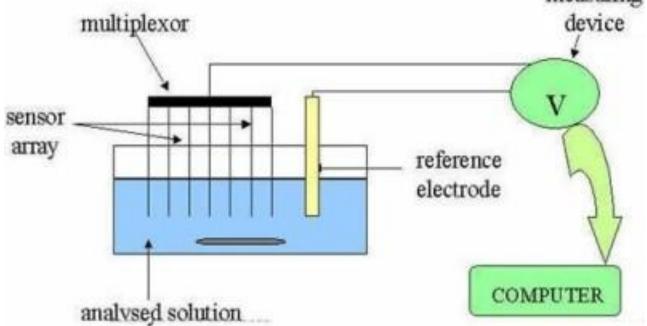
Газовые потенциометрические сенсоры

Equilibration of gases in aqueous solution yield ionic species

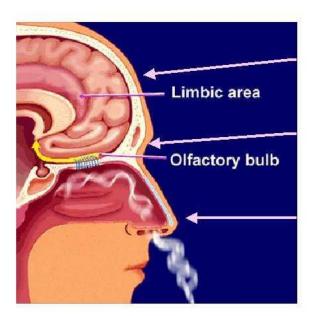

Combination of ISE-based cells as detectors behind outer gas permeable membranes



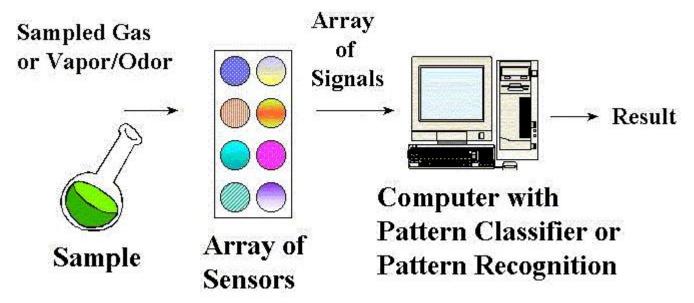
$$E_{CELL} = k + 0.059 \log \frac{K_{CO_2} P_{CO_2}}{a_{HCO_3^-}}$$


Using a fairly concentrated NaHCO₃ internal filling solution (0.1M)

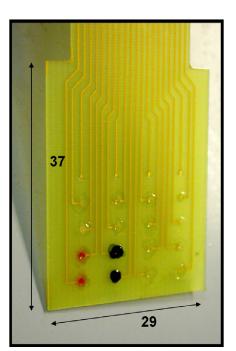
$$E_{CELL} = k' + 0.059 \log P_{CO_2}$$

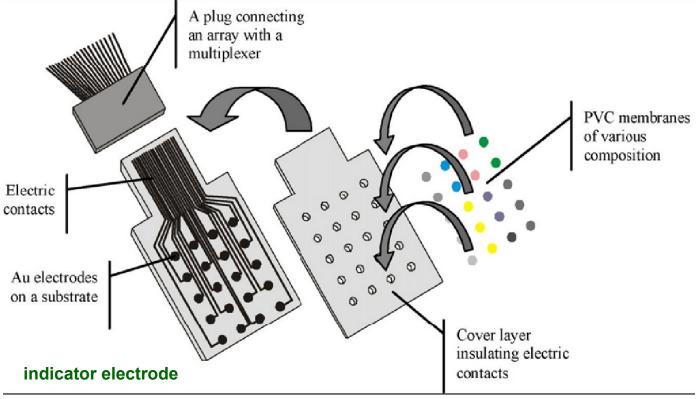


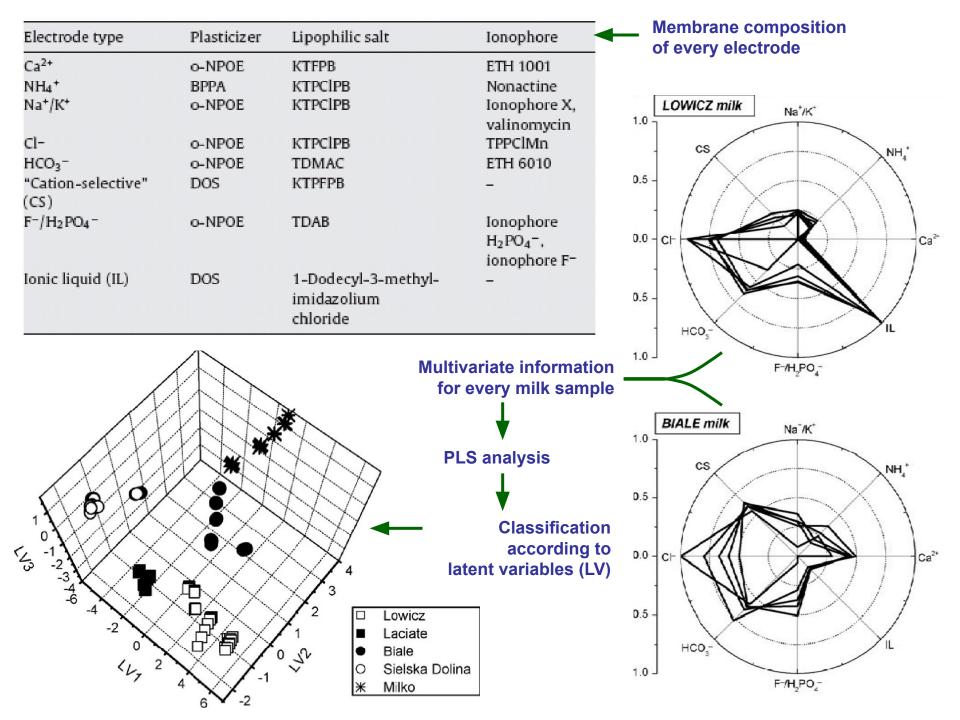
Электронный язык


Электронный нос

Pattern classifier (real neural network)

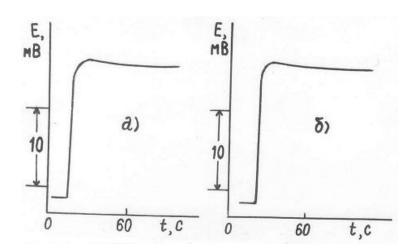

Sensor array
10⁷ cells of ~100
different receptor types
Sampling system
(temperature, humidity
control, filtering)


An "electronic or artificial nose" is an instrument, which comprises a sampling system, an array of chemical gas sensors with differing selectivity, and a computer with an appropriate pattern-classification algorithm, capable of qualitative and/or quantitative analysis of simple or complex gases, vapors, or odors.



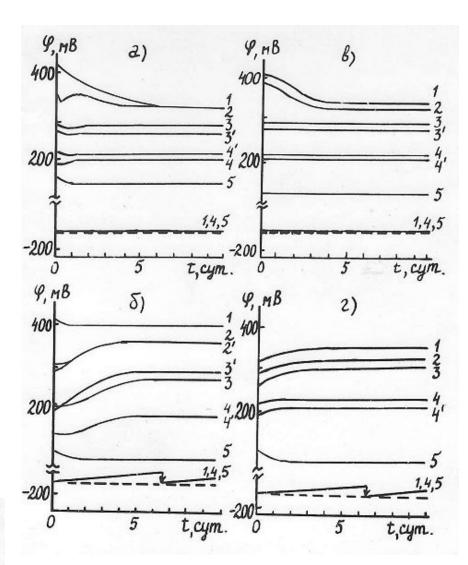
ex: electronic tongue for milk samples recognition

P. Ciosek, W. Wróblewski, Talanta 76 (2008) 548



Задача: установление связи потенциала с составом контактирующих фаз.

Для мембранных систем удалось установить связи с их характеристиками, определяемыми из мембранных потенциалов (коэффициентов селективности).


$$E = E^{0} + 2,303 \frac{RT}{z_{i}F} lg \left(a_{i} + k_{ij} a_{j}^{\frac{z_{i}}{z_{j}}} \right) K_{H^{+}-M^{+}} = \frac{a_{H}^{+}N_{M^{+}}}{a_{M}^{+}N_{H^{+}}}$$
$$k_{ij} = \frac{u_{j}}{u_{i}} K_{ij}$$

Временные (динамические) характеристики ИСЭ

Зависимость для обычной а) и твердоконтактной б) модификаций ИСЭ при быстрой смене концентра ций от 10⁻³м до 2·10⁻³м Ви₄ N J

Зависимость φ -t для твердовонтактной и обычной модификаций ИСЭ при кондиционировании в 10^{-3} М (а,в) и 10^{-5} М растворов $\mathfrak{D}u_*NJ$ (б,г). Свежвириготовленные ИСЭ (а,б) предварительно вымоченные в течение 10 суток в растворах 10^{-5} и 10^{-5} М $\mathfrak{L}u_*NJ$ (в,г). Вкутреннее заполнение ИСЭ обичной модификации 10^{-3} N (а,в), 10^{-5} М $\mathfrak{L}u_*NJ$ (б,г).

Применение потенциометрии

Потенциометрия в определении стандартных электродных потенциалов

Методы определения стандартных электродных потенциалов

Имеются три основные способа определения стандартного потенциала электрода:

- 1) экстраполяция значения ЭДС элемента на нулевую ионную силу;
- 2) вычисление по термодинамическим данным
- вычисление по константе равновесия электродной реакции, значение константы определяется аналитически.
- Значение стандартных потенциалов отдельных электродов можно вычислить, основываясь на данных для соответствующих гальванических элементов (в которых нет скачков потенциала на жидкостных соединениях).

Например, для хлорсеребряного электрода удобно воспользоваться цепью

$$Pt$$
 $H_2(1aтm)HCl(m)AgCl(тв)Ag$

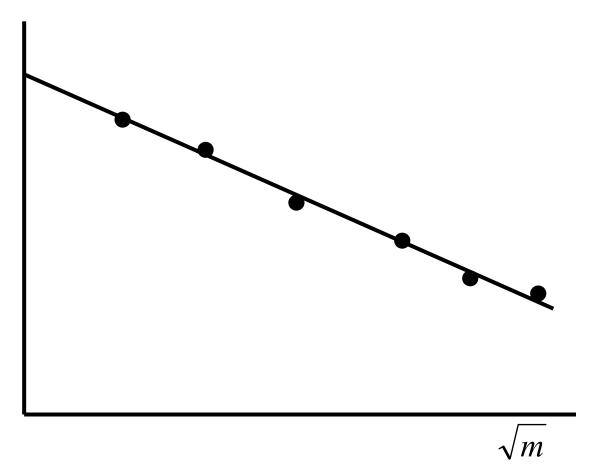
ЭДС этой цепи

$$E = E_{AgCl/Ag} - E_{H^+/H} = E_{AgCl/Ag}^0 - \frac{RT}{F} ln(a_{H^+} a_{Cl^-})$$

Перейдем от активностей ионов к среднеионным активностям электролита

$$\begin{split} & E = E_{AgCl/Ag}^{0} - \frac{RT}{F} ln \left(\gamma_{H^{+}} m_{H^{+}} \gamma_{Cl^{-}} m_{Cl^{-}} \right) = E_{AgCl/Ag}^{0} - \frac{RT}{F} ln \left(\gamma_{HCl}^{2} m_{HCl}^{2} \right) = \\ & = E_{AgCl/Ag}^{0} - \frac{2 \cdot 2,303 \cdot RT}{F} lg \left(\gamma_{HCl} m_{HCl} \right) = E_{AgCl/Ag}^{0} - \frac{2 \cdot 2,303 \cdot RT}{F} lg \gamma_{HCl} - \frac{2 \cdot 2,303 \cdot RT}{F} lg m_{HCl} \end{split}$$

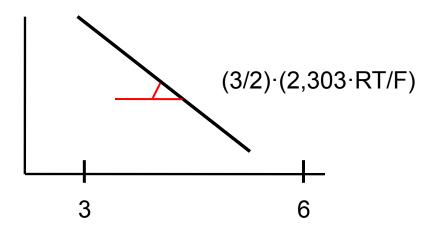
и выразим их с помощью предельного закона Дебая-Хюккеля


$$lg\gamma_{\rm HCl} = -A \Big| (1) \big(-1 \big) \Big| \sqrt{I} = -A \cdot \sqrt{\frac{1}{2} \cdot \left(1^2 \cdot m_{_{\rm H}^+} + 1^2 \cdot m_{_{{\rm Cl}^-}} \right)} = -A \sqrt{\frac{1}{2} \cdot \left(2 m_{_{{\rm HCl}}} \right)} = -A \sqrt{m_{_{{\rm HCl}}}}$$

получим

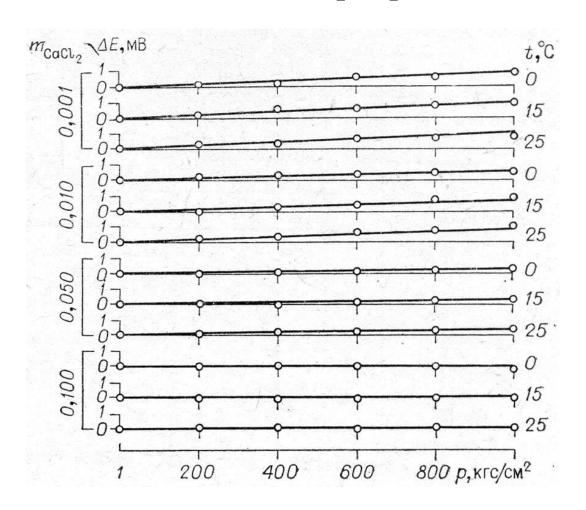
$$E + \frac{2 \cdot 2,303 \cdot RT}{F} lg m_{\rm HCl} = E^{0}_{\rm AgCl/Ag} + \frac{2 \cdot 2,303 \cdot RT}{F} A \sqrt{m_{\rm HCl}}$$

Оценка E^0 из измерений ЭДС цепи без переноса


$$E - \frac{2 \cdot 2,303 \cdot RT}{F} \lg m_{\!\scriptscriptstyle HCl} \, o \, E^{\scriptscriptstyle 0}_{\scriptscriptstyle AgCl,Ag}$$

Применение кальциевых и хлоридных мембранных электродов

Ag|AgCl|CaCl₂(0,1 m)|Хлоридная|CaCl₂ (m)|Кальциевая|CaCl₂(0,1m) |AgCl|Ag мембрана мембрана


$$\begin{split} \mathsf{E} &= \mathsf{RT/2F} \; \mathsf{In} \; (a_{\mathsf{Ca2+}} / a_{\mathsf{Ca2+}} ') + \mathsf{RT/F} \; \mathsf{In} \; (a_{\mathsf{Cl-}} / a_{\mathsf{Cl-}} ') = \mathsf{RT/2F} \; \mathsf{In} \; (a_{\mathsf{Ca2+}} \, a_{\mathsf{Cl-}} ' a_{\mathsf{Ca2+}} ' a_{\mathsf{Cl-}} ') = \\ & \mathsf{RT/2F} \; \mathsf{In} \; (a_{\mathsf{CaCl2}} / a_{\mathsf{CaCl2}} ') \\ & a_{\mathsf{CaCl2}} = \gamma_{\pm}^{\;\; 3} \cdot m_{\mathsf{CaCl2}}^{\;\; 3} \\ & \mathsf{E} = (3/2) \cdot (2,303 \cdot \mathsf{RT/F}) \; \mathsf{Ig} \; (\mathsf{m} \gamma_{\pm} / \mathsf{m}' \gamma_{\pm}') + \mathsf{E}_{\mathsf{ac}} \end{split}$$

Влияние давления на ИСЭ, применение ИСЭ под давлением

 $Ag|AgCI|CaCI_2(0,1 m)|Xлоридная|CaCI_2(m)|Кальциевая|CaCI_2(0,1 m) |AgCI|Ag$ мембрана мембрана

 $E = (3/2) \cdot (2,303 \cdot RT/F) \lg (m\gamma_{\pm}/m'\gamma_{\pm}') + Eac$

Другие применения потенциометрии

- 1. Определение термодинамических характеристик реакции, протекающей в ГЦ из температурной зависимости ЭДС (ΔΕ/ΔΤ): ΔG⁰, ΔH⁰, ΔS⁰.
- 2. Определение констант ионизации (аутопротолиза), гидролиза и др.
- 3. Определение произведений растворимости солей И др.

Применение потенциометрии для определения ионной активности

Для измерения концентрации протонов, H⁺, измеряют Е элемента типа:

$$Pt \mid H_2 \mid$$
 Анализ.раствор, KCI \mid AgCI \mid

Для растворов сильных кислот (HCI, HBr и др.) в диапазоне концентраций $10^{-3} - 10^{-1}$ М при использовании солевого моста с концентрацией КСІ 3,5 М или насыщенного раствора (при обычных температурах) разность потенциалов элемента с разной концентрацией ионов водорода определяется как:

$$E_1 - E_2 = (2,303 \cdot RT/F) \lg (C_{H+})_2 / (C_{H+})_1$$

Предполагается, что кислота полностью диссоциирована, диффузионный потенциал имеет близкое значение в обоих растворах.

29

В качестве примера определения активности рассмотрим определение рН

Для определения рН используют платиновый, хингидронный, сурьмяный и стеклянный электроды.

Формальное определение pH: **pH = - lg** $a_{H+} = - lg \gamma_{H+} C_{H+}$;

Эту величину можно извлечь из измерений ЭДС ГЦ вида:

$$Pt(H_2)$$
 Раствор X | KCl(нас.) | AgCl | Ag

$$Ag|AgCl|P-p$$
 внутр. заполнения $|$ ст. мембр. $|Pacmвop|X$ $|KCl(нас.)|AgCl|Ag$

В первом элементе протекает реакция

$$\frac{1}{2}$$
H₂(газ) + AgCl(тв.) = Ag(тв.) + Cl⁻(нас. KCl) + H⁺(р-р X) ±переносимые ионы рH = - Ig a_{H+} = (E₁ – E₁⁰¹ - E_д)/(2,3RT/F)

Во втором элементе протекает реакция

$$H^+(вн.зап.) + Cl^-(вн.зап.) = H^+(p-p X) + Cl^-(нас. KCl) ±переносимые ионы
$$pH = - lg \ a_{H+} = (E_2 - E_2^{\ 01} - E_{\underline{n}})/(2,3RT/F)$$$$

Очевидно, что рН теряет физическую определенность, т.к. невозможно точно определить величину $\mathbf{E^{01}} - \mathbf{E_{_{_{\! Z}}}}$. Чтобы знать $\mathbf{E_{_{_{\! Z}}}}$ величину, надо знать ионные активности.

Говоря словами Харнеда:

«Мы стоим перед интересной дилеммой, заключающейся в том, что невозможно рассчитать диффузионные потенциалы, не зная индивидуальных ионных активностей. И невозможно определить индивидуальные ионные коэффициенты активности без точных данных о диффузионных потенциалах. Для решения этой проблемы необходимо выйти за пределы области точной термодинамики»

Практическая шкала рН:

$$pH_x = pH_S + (E_x - E_S)/(2,303RT/F)$$

- 1. Надо задаться рН в стандартном буферном растворе
- 2. Считать, что $\mathbf{E}_{\mathbf{g}}(\mathbf{x}) = \mathbf{E}_{\mathbf{g}}(\mathbf{S})$

Мак-Инес: «Вероятно во всех случаях за исключением одного из тысячи вовсе нет необходимости рассматривать значения рН в понятиях теории растворов, а нужно только принимать числа рН как характеристику кислотности или щелочности в практической шкале»

Процедура установления рН в практической шкале

Следует выделить 4 этапа.

1. В гальваническом элементе без переноса типа

$$Pt(H_2)$$
Буферный $p-p+KCl$ $AgCl$ Ag

$$E = E^{0} - \frac{RT}{F}$$
2,3 lg $C_{H} \gamma_{H} \gamma_{Cl} - \frac{RT}{F}$ 2,3 lg C_{Cl}

Измеряя Е при нескольких концентрациях КСІ в буферном растворе, определяют величину р($C_{_H}\gamma_{_{Cl}}$)

2. Расчет предела, к которому стремится $p(C_H \gamma_H \cdot \gamma_{CI})$ при $C_{KCI} \rightarrow 0$.

Данные для фосфатного буферного раствора

 $0.025 \text{M KH}_2 \text{PO}_4 + 0.025 \text{M Na}_2 \text{HPO}_4.$

Получаем р (С_нү_н·ү_{сі})⁰

32

3. Расчет величины $p_{a_{H}}$ на основе введения условного понятия об индивидуальном ионном коэффициенте активности

$$pa_H = p(a_H \cdot \gamma_{Cl})^0 + \lg \gamma_{Cl}$$

Для расчета применяется условие Бейтса-Гуггенгейма (справедливое для ионных сил раствора I≤0,1M)

$$\lg \gamma_{Cl} = -\frac{0.512\sqrt{I}}{1 + 1.5\sqrt{I}}$$

4. Табулирование значений для буферных растворов, в т.ч. при разных температурах.

- А) Бифталат калия (25°C) 0,05M pH=4,008
- Б) Смесь фосфатов (25°C) 0,05M pH=6,865
- В) Натрий тетраборнокислый (25°C) 0,01M pH=9,180

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ШКАЛА РН ВОДНЫХ РАСТВОРОВ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ М и и с к

Т а б л и ц а 1-3начения pH реперного буферного раствора (PБР) — раствора гидрофталата калия с моляльностью 0.05 моль κr^{-1} при различных температурах

Температура, "С	рН(РБР)	Температура, "С	pH(PBP)	Температура, "С	рН(РБР)
0	4,000	35	4,018	65	4,10
5	3,998	37	4.022	70	4,12
10	3,997	40	4.027	75	4.14
15	3,998	45	4,038	80	4,16
20	4,001	50	4,050	85	4,18
25	4,005	55	4.064	90	4,21
30	4,011	60	4.080	95	4,24

Т а б л и ц а 2 — Значения рН(ЭБР) для эталонных буферных растворов

Темпе ратура, "С	Калий гидротартрат (насыщен- ный раствор при 25 °C) КИС ₄ Н ₄ О ₆	Калий дигидро- цитрат (0,1 моль/кг) КН ₂ С ₆ Н ₅ О ₇	Калий гидрофталат (0,05 моль/ /кг) КНС _в Н ₄ О ₄	Натрий моногидрофосфат (0,025 моль/кг)+ка- лий дигидрофосфат (0,025 моль/кг) Na ₂ HPO ₄ * KH ₂ PO ₄	Натрий моногидрофосфат (0,03043 моль/кг) + калий дигидрофосфат (0,008695 моль/кг) Na ₂ HPO ₄ +KH ₂ PO ₄	Натрий тетраборат (0,01 моль/ /кг) Na2B ₄ O ₂ × ×10H ₂ O	Натрий гидрокар- бонат (0,025 моль/ /кг) + натрий карбонат (0,025 моль/ /кг) NaHCO ₃ + + Na ₂ CO ₃
0	_	3,863	4,000	6,984	7,534	9,464	10,317
5	1.00	3,840	3.998	6,951	7,500	9,395	10,245
10	-	3,820	3,997	6,923	7,472	9,332	10,179
15	-	3,802	3,998	6,900	7,448	9,276	10,118
20	-	3,788	4,001	6,881	7,429	9,225	10,062
25	3,557	3,776	4,005	6,865	7,413	9,180	10,012
30	3,552	3.766	4,011	6,853	7,400	9,139	9,966
35	3,549	3,759	4,018	6,844	7,389	9,102	9,926
37	3,548	3,756	4,022	6,841	7,386	9,088	9,910
40	3,547	3,754	4,027	6,838	7,380	9,068	9,889
50	3,549	3,749	4,050	6,833	7,367	9,011	9,828
60	3,560	-	4,080	6,836	10 To	8,962	-
70	3,58	-	4,12	6,85		8,92	-
80	3,61		4,16	6,86	100	8,88	-
90	3,65		4,21	6,88	6 -	8,85	-
95	3,67		4,24	6,89	_	8,83	_

 Π р и м е ч а н и е — Неопределенность значений pH составляет: $\pm 0,003$ — при температуре 25 °C;

±0,005 - в интервале температур от 0 до 60 °C, кроме температуры 25 °C;

±0,009 - в интервале температур от 60 до 95 °C.

Таблица 3 — Значения рН (РЭ) для рабочих эталонов

Температура, °С	Калий тетраоксалат (0,1 моль/кг) КН ₃ (С ₂ О ₄) ₂ × ×2H ₂ O		Натрив гидроди- гликолят (0,05 моль/кг) С ₄ Н ₅ О ₅ Nа	Калия гидротартрат насыщенный раствор при 25°C) КНС ₄ Н ₄ О ₅	Калий гидрофталат (0,05 моль/кг) КНС ₈ Н ₄ О ₄	Уксусная кислота (0,1 моль/дм ³)+ +натряй ацетат (0,1 моль/дм ³) СН ₃ СООН+ -СН ₃ СООNа	Уксусная кислота (0.01 моль/дм ³)+ натрия ацетат (0.01 моль/дм ³) СН ₃ СООН+ *CH ₃ COONa	Пиперазия фосфат (0,62 моль/кг) С ₄ Н ₁₀ N ₂ × ×Н ₃ РО ₄
0	-	_		-	4,000	4,664	4,729	-
5		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	3,466	-	3,998	4,657	4,722	6,477
10		1,638	3,470	-	3,997	4,652	4,717	6,419
15 20 25 30	-	1,642	3,476	_	3,998	4,647	4,714	6,364
20	1,475	1,644	3,484	100	4,001	4,645	4,712	6,310
25	1,479	1,646	3,492	3,556	4,005	4,644	4,713	6,259
30	1,483	1,648	3,502	3,549	4,011	4,643	4,715	6,209
37	1,490	1,649	3,519	3,544	4,022	4,647	4,722	6,143
40	1,493	1,650	3,527	3,542	4.027	4,650	4,726	6,116
50	1,503	1,653	3,558	3,544	4.050	4,663	4,743	6,030
60	1,513	1,660	3,595	3,553	4,080	4,684	4,768	5,952
70	1,52	1,67	_	3,57	4.12	4,71	4,80	
80	1,53	1,69		3,60	4,16	4,75	4,84	
90	1,53	1,72	_	3,63	4.21	4,80	4.88	_
95	1,53	1,73	_	3,65	4,24	4,83	4.91	_

Окончание табл. 3

Температура. 'С	Натрий моногидро- фосфат (0,025 моль/кг) + + калий дигидро- фосфат (0,025 моль/кг) Na ₂ HPO ₄ + + KH ₂ PO ₄	Натрий моногидро- фосфат (0,03043 моль/кг)+ +калий дигилро- фосфат (0,018695 моль/кг) Na ₂ HPO ₄ * +КH ₂ PO ₄	Натрия монотидро- фосфат (0,04 моль/кг) * *калий дигидро- фосфат (0,01 моль/кг) Na ₂ HPO ₄ *КН ₂ PO ₄	Трис гидрохлорил (0,05 моль/кг)+ + трис* (0,01667 моль/кг)	Натрий тетраборат (0.05 моль/кг) Na ₂ B ₄ O ₇ × ×10H ₂ O	Натрий тетраборат (0,01 моль/кг) Nа ₂ В ₄ О ₇ × ×10 Н ₂ О	Натрий гидро карбонат (0,025 моль/кт) + натрия карбонат (0,025 моль/кт) NaHCO ₃ ** + Na ₂ CO ₃	Кальций гидроксид (насыщенный раствор при 20°C) Са(ОН)2
0	6,961	7,506	-	8,399	9,475	9,451	10,273	13,360
5 10	6,935	7,482	7,512	8,238	9,409	9,388	10,212	13,159
10	6,912	7,460	7,488	8,083	9,347	9,329	10,154	12,965
15	6,891	7,441	7,466	7,933	9,288	9,275	10,098	12,780
20 25	6,873	7,423	7,445	7,788	9,233	9,225	10,045	12,602
25	6,857	7,406	7,428	7,648	9,182	9,179	9,995	12,431
30 37	6,843	7,390	7,414	7,513	9,134	9,138	9,948	12,267
37	6,828	7,369	7,404	7,332	9,074	9,086	9,889	12,049
40	6,823	_	_	7,257	9,051	9,066	9,866	11,959
50	6,814		100000	7,018	8,983	9,009	9,800	11,678
60	6,817	()	100	6,794	8,932	8,965	9,753	11,423
70	6,83	_	_	_	8,90	8.93	9,73	11,19
80	6,85	(5.5 2	1999	1755	8.88	8,91	9,73	10,98
90	6,90	_	-	_	8,84	8,90	9,75	10,80
95	6,92		_	227	8,89	8,89	9,77	10,71

^{* 2-}амино-2-(гидроксиметил)-1,3-пропандиол или трис(гидроксиметил)аминометан.

Примечание — Неопределенность значений рН составляет: ±0,003 — при температуре 25 °C; ±0,005 — в интервале температур от 0 до 60 °C, кроме температуры 25 °C; ±0,009 — в интервале температур от 60 до 95 °C.

Определение pD растворов тяжелой воды

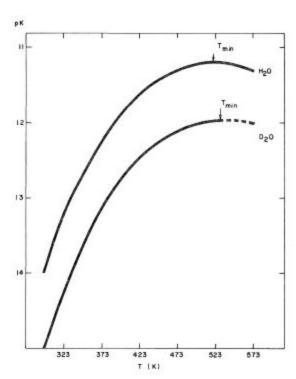


Fig. 2. Variation of pK with temperature. The data for H_2O is from ref. 11. T_{\min} indicates the temperature at which pK passes through a minimum. --- indicates extrapolated values calculated from eq. 12.

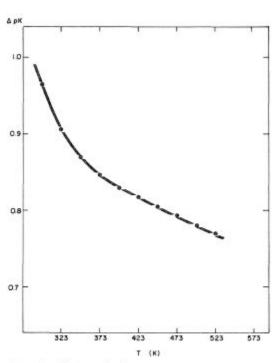


Fig. 3. Difference in the pK values for D₂O and H₂O (from the data of Fig. 2) plotted as a function of temperature.

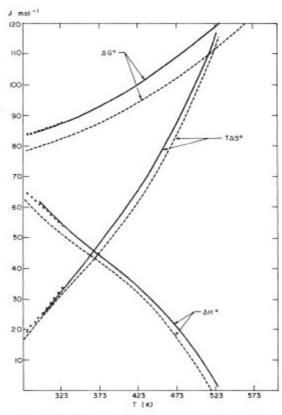


Fig. 4. Variations in the free energy (ΔG^0), enthalpy (ΔH^0) and entropy ($-T\Delta S^0$) of ionization with temperature; — D₂O (this work); — H₂O (from the data of ref. 11); • D₂O (from the data of ref. 19).

Standards for a Practical Scale of pD in Heavy Water

Maya Paabo and Roger G. Bates

National Bureau of Standards, Washington, D. C. 20234

Pt $D_2(g)$ KD₂Cit (0.05m), KCl (m') in D₂O AgCl Ag (la)

Pt | $D_2(g)$ | $NaDCO_3(0.025m)$, $Na_2CO_3(0.025m)$, NaCl(m') in D_2O | AgCl | Ag (Ib)

$$pD(X) = pD(S) + \frac{(E_X - E_8)F}{RT \ln 10}$$

$$p(a_D\gamma_{CI}) = \frac{(E - E^0)F}{RT \ln 10} + \log m_{CI}$$

$$pa_D = p(a_D \gamma_{Ci})^0 + \log \gamma_{Ci}$$

$$-\log \gamma_{C_1} = \frac{AI^{1/2}}{1 + 4.565BI^{1/2}}$$

Table IV. Standard Reference Values of pD(S) for Three Buffer Solutions in Deuterium Oxide^a

ı, °C	KD ₂ Citrate (0.05m)	KD ₂ PO ₄ (0.025m) Na ₂ DPO ₄ (0.025m)	NaDCO ₃ (0.025m) Na ₂ CO ₃ (0.025m)
5	4.378	7.539	10.998
10	4.352	7.504	10.924
15	4.329	7.475	10.855
20	4.310	7.449	10.793
25	4.293	7.428	10.736
30	4.279	7.411	10.685
35	4.268	7.397	10.638
40	4.260	7.387	10.597
45	4.253	7.381	10.560
50	4.250	7.377	10.527

Table V. Preparation of Standard Reference Solutions for the Measurement of pD in D₂O

Standard solution	Salt	Weight in vacuo (grams salt)/ (grams D ₂ O)
Citrate	$KH_2C_tH_4O_7(0.05m)$	0.01151
Phosphate	KH ₂ PO ₄ (0.025m)	0.003402
	Na ₂ HPO ₄ (0.025m)	0.003549
Carbonate	NaHCO ₂ (0.025m)	0.002100
	Na ₂ CO ₃ (0.025m)	0.002650

Сопоставление активностей, оцененных из условия Бейтса-Гуггенгейма

CI⁻

↓
NaCl → KCl → K⁺ → KNO₃ → NO₃⁻

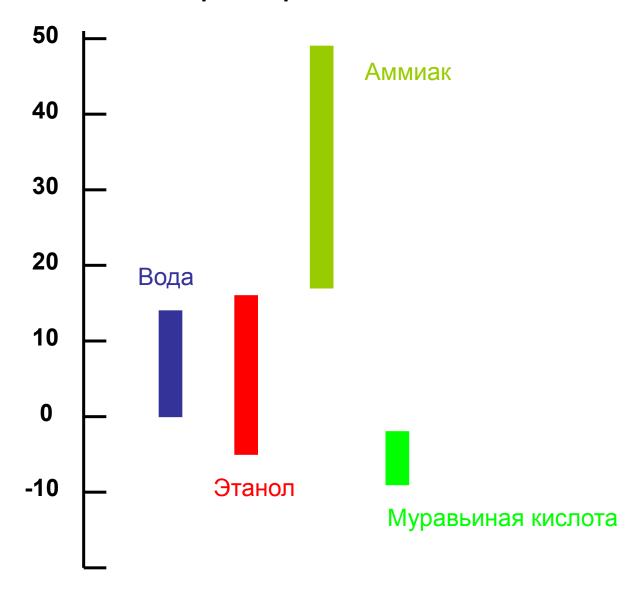
↓
$$Na^{+} \rightarrow NaNO_{3} \rightarrow NO_{3}^{-}$$

Определение кислотности смешанных растворителей

Определим активность протона в воде (W): $m \cdot_{w} \gamma_{H}$, а в растворителе S: $m \cdot_{s} \gamma_{H}$

т – концентрация, у - коэффициент активности протона

Если выбрать в качестве стандартного состояние протона в воде, тогда будем иметь:


активность протона в воде (W): $m_w^{\gamma} \gamma_H$, а в растворителе S: $m_w^{\gamma} \gamma_H \gamma_W^{\gamma} \gamma_H$ определяется свободной энергией переноса протона из стандартного состояния в воде в стандартное состояние в растворителе S.

Экспериментальное определение активностей ионов и эффектов среды методом ЭДС в элементе без переноса приводит к величине

для протона в воде (W): $m \cdot {}_{w} \mathbf{\gamma}_{H} \cdot {}_{w} \mathbf{\gamma}_{A}$, а в растворителе S: $m \cdot \mathbf{\gamma}^{w \to S} \cdot {}_{S} \mathbf{\gamma}_{H} \cdot {}_{S} \mathbf{\gamma}_{A}$

Растворитель	Эффект среды	Растворитель	Эффект среды
Вода	0	Бутанол	4,7
Аммиак	-16,6	Изобутанол	4,5
Метанол	3,3	Бензойный спирт	3,1
Этанол	4,2	Муравьиная к-та	8,6
Пропанол	4,2		4

Протяженность и относительное положение шкал рН в четырех растворителях

Аналитическое применение потенциометрии

- Прямое определение катионов и анионов, а также косвенное определение молекулярных веществ
- Титрование (кислотно-основное; комплексонометрическое; осадительное; оксидиметрическое). Виды кривых титрования; способы определения точки эквивалентности: метод параллелограмма; дифференциальная кривая титрования; вторая производная.
- Метод добавок

В качестве датчиков используются, в основном, ИСЭ. Этот раздел потенциометрии называется ионометрией.

Редко используются электроды 1 и 2 рода, амальгамные и др.

Достоинства

- 1. Не оказывают воздействия на исследуемый раствор
- 2. Датчики портативны, существуют микроэлектроды для измерения in vivo, in vitro, in situ
- 3. Возможность применения в системах длительного наблюдения (мониторинга)
- 4. Низкая стоимость
- 5. Удовлетворительная точность (не хуже 10-15% отн.)
- 6. Экспрессность
- 7. Большое число фирм, производящих оборудование как за рубежом (Orion, Technicon, Du Pont, Corning, Beckman, Hitachi и др.), так и в России (Вольта, Потенциал, Эконикс, вкл. Новосибирск: Инфраспак-Аналит, Семико)

Недостатки

- 1. Не все ИСЭ обладают хорошей селективностью.
- 2. Наличие дрейфа потенциала...
- 3. Проблема воспроизводимости измерений.

Прямое определение концентрации и активности катионов и анионов

Определяемые ионы:

1. Ионные формы элементов периодической системы (из 1, 2 и 3 групп – катионы; из 6 и 7 групп – анионы; элементы побочных подгрупп).

$$1 - H^+$$
, Li $^+$, Na $^+$, K $^+$, Rb $^+$, Cs $^+$; $2 - Mg^{2+}$, Ca $^{2+}$, (Ca $^{2+}+Mg^{2+}$), Sr $^{2+}$, Ba $^{2+}$; $3 - Al^{3+}$, In $^{3+}$, TI $^+$, TI $^{3+}$; $6 - S^{2-}$, Se $^{2-}$; $7 - F^-$, CI $^-$, Br $^-$, I $^-$. Катионы элементов побочных подгрупп: Cr, Mn, Fe, Ni, Cu, Zn и другие.

2. Многоатомные ионы

Оксо-формы: HCO_3^- , CO_3^{2-} , SO_3^{2-} , SO_4^{2-} , CIO^- , CIO_4^- и др.; водород содержащие формы: NH_4^{+}

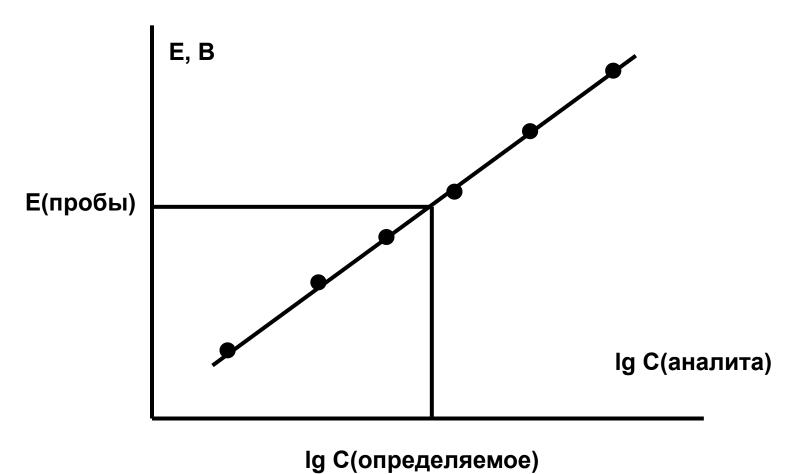
3. Комплексные формы.

$$Ag(CN)_2^-$$
, $AuCl_4^-$, $PdBr_3^-$, $PtCl_4^-$ и др.

4. Органические катионы и анионы

Катионы: R_4N^+ , R_4P^+ , R_4As^+ , R_3S^+ ; анионы: R_4B^- и др. Катионные и анионные ПАВ.

При прямом определении концентрации в анализируемом растворе задается:


- 1. Высокая ионная сила для поддержания постоянства коэффициентов активности
- 2. Постоянство рН
- 3. В отдельных случаях включают комплексообразователи (для перевода закомплексованных форм в свободное состояние) или восстановители (для подавления влияния растворенного кислорода на содержание ионных форм)
- Такие растворы часто производятся в массовом масштабе фирмами, производящими ионометрическую аппаратуру. например, БРУИС (буферный раствор установления ионной силы).
- Такой раствор используют при определении фторид-ионов с помощью F⁻ ИСЭ. В 1 л раствора содержится 57 мл ледяной уксусной кислоты, 58 г NaCl, 4 г 1,2-циклогександиаминтетрауксусной кислоты. pH доводят гидроксидом натрия до 5,0-5,5.

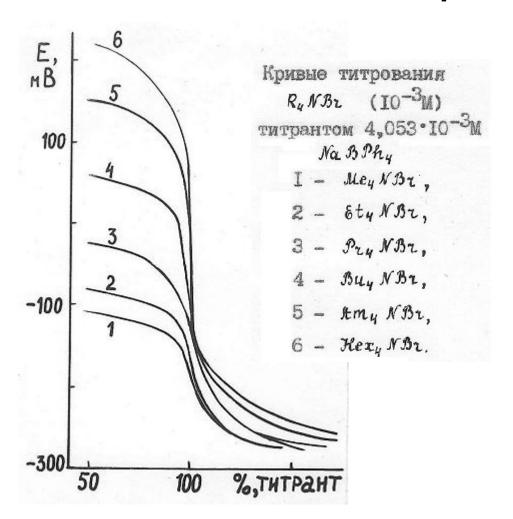
Процедура определения концентрации

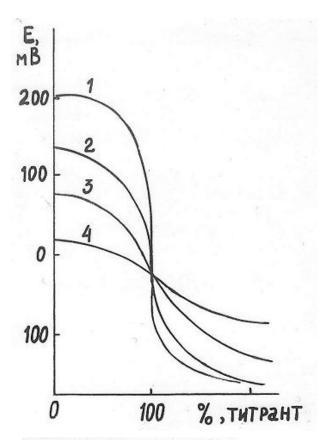
Процедура состоит из пробоподготовки и определения.

Предварительно проводят градуировку датчиков.

$$E = E^0 + S \lg \gamma C = (E^0 + S \lg \gamma) + S \lg C = E^{0'} + S \lg C$$

Косвенное определение молекулярных компонентов


- **1. Определение газов (СО₂, NH₃).** Принцип определения по изменению рН промежуточного раствора, контактирующего с одной стороны с датчиком рН, с другой с газовой средой.
- **2. Определение состава водно-органических смесей.** Например, спирт в водном растворе. Известна методика определения этанола в водно-спиртовых растворах.


Принцип определения: в водно-спиртовый раствор вводится заданная концентрация соли гидрофобного катиона (ТАМАН). При разных соотношениях этанол:вода меняется потенциал ИСЭ, чувствительного к гидрофобному катиону. $\mathbf{E} = \mathbf{E}^0 + \mathbf{S} \cdot \mathbf{Ig} \cdot \mathbf{\gamma}^0 \mathbf{\gamma} \mathbf{C}_{\text{гидроф.катион}} = (\mathbf{E}^0 + \mathbf{S} \cdot \mathbf{Ig} \cdot \mathbf{\gamma}^0 \mathbf{C}_{\text{гидроф.катион}}) + \mathbf{S} \cdot \mathbf{Ig} \cdot \mathbf{\gamma}^0 \mathbf{E}^{-1} + \mathbf{S} \cdot \mathbf{Ig} \cdot \mathbf{\gamma}^0$. Оказывается, что в интервале 0-30 об.% Е линейно зависит от концентрации спирта.

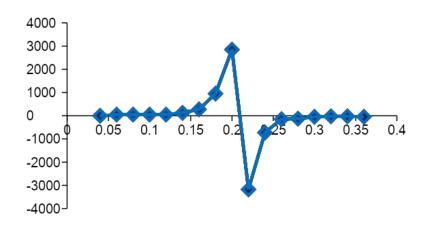
3. Неионогенные ПАВ. НПАВ с солями тяжелых металлов образуют комплексные соединения, которые могут быть определены прямо или титрованием:

$$C_{9}H_{19} - C_{6}H_{4} - O - (CH_{2}CH_{2}O)_{n}H + xNa[BPh_{4}] + \frac{x}{2}BaCl_{2} = Ba_{x/2} \{C_{9}H_{19} - C_{6}H_{4} - O - (CH_{2}CH_{2}O)_{n}H\}[BPh_{4}]_{x} \downarrow + xNaCl$$

Титрование






Титрование различных концентраций Ли, NBr титрантом Na. В Рh, (5,02·10⁻³M):

$$3 - 10^{-5} M$$

Титрование. Интегральная и дифференциальная кривые. Вторая производная

Метод добавок

Метод однократной добавки.

Пусть электрод чувствителен к катиону. Тогда в растворе неизвестной концентрации этого катиона измеренная ЭДС будет равна

 $E=E^{0'} + (RT/F)2,3IgC_{x}$

При добавке к объему V_0 раствора соли этого же катиона концентрации C_0 .