
Сероводород

Нахождение в природе

- В вулканических газах,
- В месторождениях нефти и газа,
- В водах минеральных источников, например, в Нижне-Ивкино
- Растворен в глубоких слоях (ниже 150 200 м) Черного моря

Физические свойства

- Бесцветный газ с характерным запахом гниющего белка
- В полтора раза тяжелее воздуха
- Снижается при температуре -60,3 °C
- Затвердевает при -80,6 °C
- Легко воспламеняется, смесь с воздухом взрывает

Химические свойства

2H₂S+3O₂=2H₂O+2SO₂ (при избытке кислорода)

S (-2) □ S (+4) - восстановитель (отдаёт 6 электронов)

О₂ (0) □ О₂ (-2) - окислитель (принимает 4 электрона)

Окисление до свободной серы, оседающей на чашке в виде желтого налета:

4e 2H₂S+O₂=2H₂O+2S (при недостатке кислорода)

- S (-2) □ S (0) восстановитель (отдаёт 2 электрона)
- O₂ (0) □ 20 (-2) окислитель (принимает 4 электрона)

При высокой температуре сера взаимодействует с водородом, образуя газ сероводород:

S (0) S (-2) окислитель (принимает 2 электрона)

H₂ (0) H₂ (+) - восстановитель (отдаёт 2 электрона)

Реагирует с щелочами:

H₂S + 2NaOH = Na₂S +2H₂O (средняя соль при избытке NaOH)

 $H_2S + NaOH = NaHS + H_2O$ (кислая соль при отношении: 1:1) реакции ионного обмена

Сероводород реагирует также со многими другими окислителями:

3H₂S + 4HClO₃ = 3H₂SO₄

реакция ионного обмена

2H₂S + SO₂ = 2H₂O +2S

 $S(-2) \square S(0)$ - восстановитель (принимает 2 электрона) $S(+4) \square S(0)$ - окислитель (отдает 4 электрона)

реакция диспропорционирования

Взаимодействие с солями свинца

H₂S + Pb(NO₃)₂=PbS + 2HNO₃

сульфид свинца (чёрный осадок)

Качественная реакция на сероводородную кислоту

Получение сероводорода действием разбавленных кислот на сернистые металлы, например на сульфид железа:

FeS + 2HCl = FeCl₂ + H₂S↑

peakция ионного обмена

Применение сероводорода H₂S

- В аналитической химии сероводород и сероводородная вода используются как реагенты для осаждения тяжелых металлов, сульфиды которых очень слаборастворимы.
- В медицине: в составе природных и искусственных сероводородных ванн, а также некоторых минеральных вод.
- Применяют для получения серной кислоты, элементной серы, сульфидов.
- В последние годы рассматривается возможность использования в качестве энергетического и химического сырья.