
## Особенности переваривания и всасывания липидов. β – окисление жирных кислот в митохондриях.

Автор – доцент Рыскина Е. А.

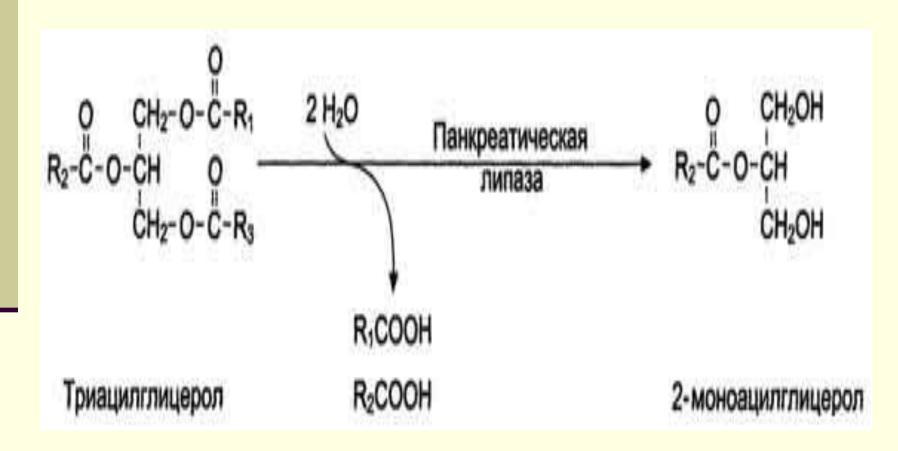
## Переваривание липидов состоит из эмульгирование и гидролиза жиров



Эмульгирование происходит в тонком кишечнике под действием солей желчных кислот. Желчные кислоты синтезируются в печени из холестерина, секретируются в желчный пузырь, затем по желчным протокам попадают в кишечник, и возвращаются в печень (рециркуляция). Желчные кислоты действуют как детергенты, располагаясь на поверхности капель жира и снижая поверхностное натяжение. В результате крупные капли жира распадаются на много мелких.

#### Желчные кислоты

- Различают: 1.Свободные желчные кислоты: холевая, дезоксихолевая, хенодезоксихолевая
  - 2. Парные или коньюгированные с глицином или таурином желчные кислоты: гликохолевая, таурохолевая.


Наиболее эффективны парные желчные кислоты т.к. более гидрофобны.

#### Гидролиз жиров панкреатической липазой.

Превращение пролипазы в активную <u>липазу</u> Превращение пролипазы в активную липазу происходит при участии желчных кислот Превращение пролипазы в активную липазу происходит при участии желчных кислот и еще одного <u>белка</u> Превращение пролипазы в активную липазу происходит при участии желчных кислот и еще одного белка панкреатичес<del>кого сока – ко</del>липазы. Колипаза присоединяется к пролипазе и липаза Превращение пролипазы в активную липазу происходит при участии желчных кислот и еще одного белка панкреатического сока – колипазы. Колипаза присоединяется к пролипазе и липаза становится активной и устойчивой к действию трипсина. + колипаза

### Липаза гидролизует жиры до β - моноацилглицеролов и высших

#### жирных кислот.



# Всасыванию всех этих продуктов переваривания жиров предшествует образование смешанных мицелл.



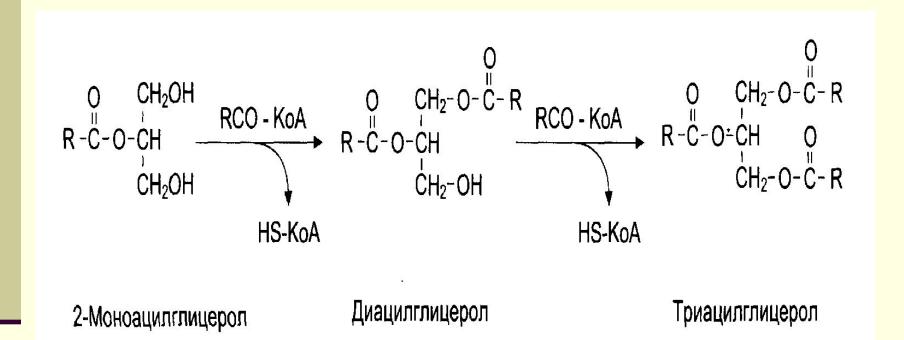
Мицеллы содержат в качестве основного компонента соли желчных кислот, в которых растворены жирные кислоты, МАГ, холестерин и другие липиды. Мицеллы сближаются с клетками слизистой оболочки кишечника и компоненты мицелл диффундируют внутрь клеток.

## Этапы поступления эндогенных жиров в организм

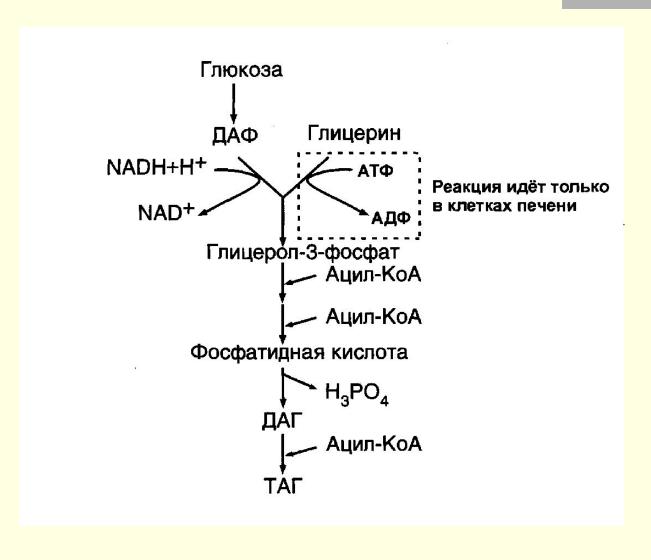
#### Ресинтез липидов в стенке кишечника

- Механизм ресинтеза заключается:
- а) в образовании активной формы жирной кислоты
- б) синтезе жира из β моноацилглицерина и активной формы жирной кислоты

#### Строение липопротеина


#### Классификация и основные свойства липопротеинов сыворотке крови человека.

| - |                     |                         | ,                           |               | ,              |
|---|---------------------|-------------------------|-----------------------------|---------------|----------------|
|   | ТИПЫ                |                         | ЛПОНП                       | лпнп          | ЛПВП           |
|   | ЛИПОПРОТЕИНОВ (ЛП): | хиломик-                | (ЛП очень                   | (ЛП низкой    | (ЛП высокой    |
|   |                     | РОНЫ (ХМ)               | низкой                      | плотности)    | плотности)     |
|   |                     |                         | плотности)                  | ·             | ·              |
| Ì | COCTAB %:           |                         |                             |               |                |
|   | БЕЛКИ               | 2                       | 10                          | 22            | 50             |
|   | ФОСФОЛИПИДЫ         | 6                       | 18                          | 21            | 27             |
|   | ХОЛЕСТЕРИН          | 7                       | 17                          | 50            | 20             |
|   | ΤΑΓ                 | 85                      | 55                          | 7             | 3              |
| Ì | ДИАМЕТР ЧАСТИЦ В    |                         |                             |               |                |
|   | HM                  | Больше 120              | 30 - 100                    | 20 -100       | 7 - 15         |
|   |                     |                         |                             |               |                |
|   | _                   | Theyerent               | Трация                      | Транспорт     | Удаление       |
|   | Функции             | Транспорт<br>липидов из | Транспорт<br>липидов,       | холестерина в | избытка        |
|   | липопротеинов       | клеток<br>кишечника     | синтезированных<br>в печени | ткани         | холестерина из |
|   |                     |                         |                             |               | клеток и др.   |
|   |                     |                         |                             |               | ЛП             |
|   |                     |                         |                             |               |                |


## Обмен триацилглицеролов (ТАГ) Синтез ТАГ

- Непосредственными субстратами для синтеза
   ТАГ являются ацил КоА и глицерол-3 фосфат.
- Метаболический путь синтеза одинаков в печени и жировой ткани, за исключением образования глицерол–3– фосфата
- Глицерол 3 фосфат может образовываться разными путями (их 3):
- 1 моноацилглицероловый
- 2 диоксиацетонфосфатный
- 3 глицериновый
- Синтез триацилглицеролов стимулируется инсулином.

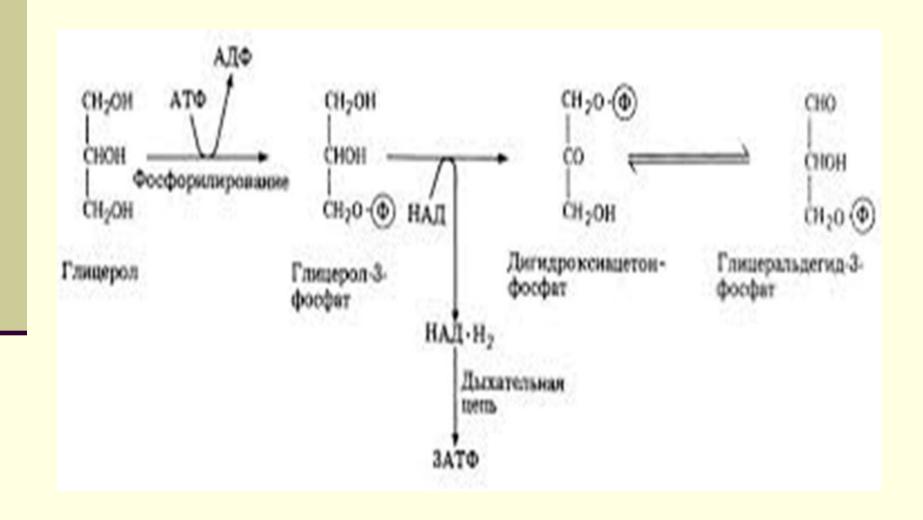
#### 1 путь - моноацилглицероловый



#### 2 и 3 пути синтеза ТАГдиоксиацетонфосфатный и глицериновый



#### Распад триацилглицеролов


- Распад ТАГ происходит в кишечнике и жировой ткани - адипоцитах (липолиз).
- В адипоцитах ТАГ форма депонирования жира,
- распадаются на глицерина и жирные кислоты под действием ТАГ – липазы. Глицерин переносится в печень, а жирные кислоты окисляются в адипоцитах или переносятся альбумином с кровью в разные органы – печень, мышцы и др.
- В адипоцитах ТАГ— липаза гормонозависима.
   Активируется глюкагоном, адреналином и АКТГ, а ингибируется инсулином.

CH<sub>2</sub>OCOC<sub>17</sub>H<sub>36</sub>

CH2OH

CHyOCOC19Han

#### Превращения глицерина.



## Энергетический эффект превращения глицерина

- Итого: 3 АТФ (НАДН(Н+) в реакциях превращения + 5 АТФ в гликолизе + 3 АТФ (НАДН(Н+) в окислительном декарбоксилировании ПВК +
- 12 АТФ в ЦТК = 23 АТФ 1 АТФ (1 реакция активация ВЖК) = 22 АТФ
- Если превращается фосфатидная кислота, то 23 АТФ, т.к. не нужна 1 АТФ на активацию в первой реакции.

#### β – окисление жирных кислот в митохондриях

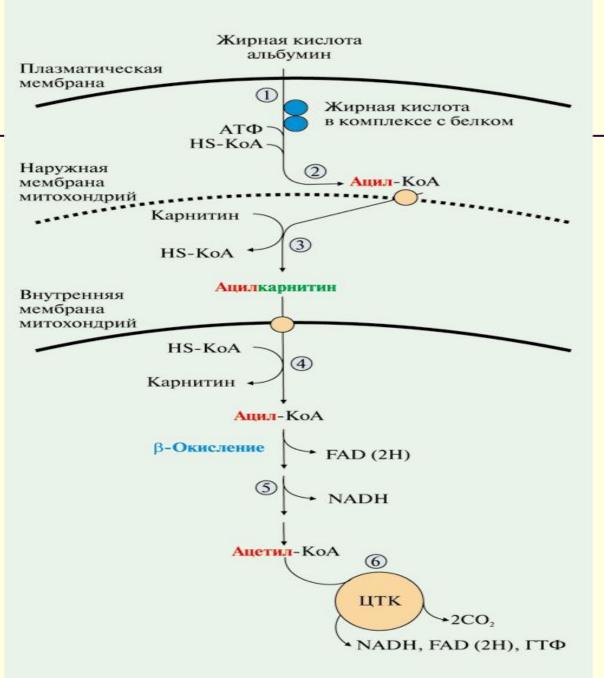
β окисление - специфический путь катаболизма жирных кислот, при котором от жирной кислоты последовательно отщепляется по 2 атома углерода в виде Ацетил – КоА.

Метаболический путь назван так потому, что реакция окисления жирной кислоты происходит у β — углеродного атома. Реакция β — окисления и последовательного окисления ацетил — КоА в ЦТК служит источником энергии для синтеза АТФ по механизму окислительного фосфорилирования.

β – окисление активно в разных органах, но особенно в сердечной мышце.

#### Включает 3 стадии:

- 1) Активация жирной кислоты
- 2) Транспорт ацил КоА из цитозоля в митохондрии
- 3) β -окисление жирных кислот в митохондриях.


## 1 стадия - активация жирной кислоты

Свободная жирная кислота является инертной и не может подвергаться окислению, пока не будет активирована. Активация протекает на наружней мембраны митохондрии.

ацил КоА <u>синтетаза</u>

R-COOH+HS КОА+АТФ ——— R-CO-КоА+АМФ+ ФФн
ацил - КоА
(активная ВЖК)

 Необратимость реакции достигается расщеплением ФФн на два Фн под действием пирофосфатазы.



2 стадия транспорт
ацил КоА из
цитозоля в
митохондрии

## 3 стадия -β -окисление жирных кислот в митохондриях.

- Включает несколько энзиматических реакций:
- 1)первая реакция дегидрирование;
- 2)реакция гидратации;
- 3)вторая реакция дегидрирование;
- 4)тиолазная реакция.

#### β -окисление жирных кислот

### Энергетический выход при полном окислении пальмитиновой кислоты

При  $\beta$  - окисления ВЖК, содержащей n – углеродных атомов, происходит n/2 – 1 циклов  $\beta$  - окисления и всего получится n/2 Ацетил - КоА

Общее уравнение β - окисления пальмитиновой кислоты:

Пальмитоил KoA + 7 ФАД + 7HAД+ 7H2O + 7 HSKoA  $\rightarrow$ 

8 Ацетил - KoA +  $7\Phi$ АД $H_2$  + 7HАДH + 7H

При каждом цикле образуется 1 молекула НАДН(Н)+ и 1 молекула ФАДН2.

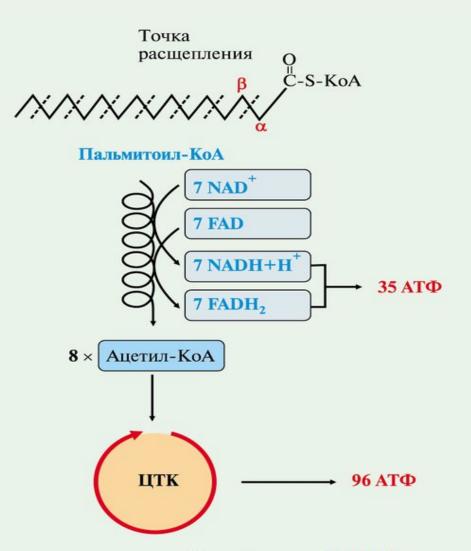
1 молекула НАДН(Н)+ дает 3 АТФ

при окислительном

1 молекула ФАДН2 - 2 АТФ

фосфорилирование

5 ATФ 7(циклов) = 35 ATФ


Всего получится n/2 - Ацетил - КоА т.е. 8 молекул.

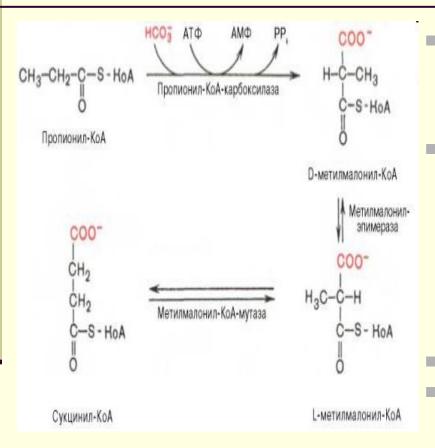
1 молекула Ацетил – КоА окисляясь в ЦТК дает 12 АТФ.

8 Ацетил - КоА 12АТФ (ЦТК) = 96 АТФ

 $96AT\Phi + 35AT\Phi = 131 AT\Phi - 1 AT\Phi = 130 AT\Phi$ 

С учетом одной потраченной молекулы АТФ на активацию пальмитиновой кислоты, общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты составляет 130 молекул АТФ.




Полный выход: 131 АТФ

#### Энергетичес кий выход при полном окислении пальмитино вой кислоты

#### β – окисление ненасыщенной жирной кислоты

- При окислении ненасыщенной ВЖК (есть двойная связь) нет первого дегидрирования, т.к. есть уже двойная связь в еноил-КоА.
- В первом дегидрировании образуется 2 АТФ (ФАДН₂), следовательно при полном окислении ненасыщенной ВЖК образуется на 2 АТФ меньше (в цикле, где есть двойная связь)

### β – окисление ВЖК с нечетным числом атомов «С»



- При окислении ВЖК с нечетным числом атомов «С» образуются несколько молекул Ацетил-КоА (2С) и пропионил-КоА (3С).
- На последнем этапе расщепления (β-окисления) образуется одна молекула пропионил-КоА и одна молекула ацетил-КоА, а не 2 молекулы ацетил-КоА (как при окислении ВЖК с четным числом атомов «С»)
- Ацетил-КоА окисляется в ЦТК.
  - Пропионил-КоА превращается в Метилмалонил-Коа, который далее превращается в Сукцинил-КоА. Сукцинил-КоА окисляется в ЦТК.