МЕТОДЫ ОЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ

Методы очистки масляного сырья

- Смолисто-асфальтеновые вещества (1) удаление серной кислотой.
- Ароматические углеводороды (в основном полициклические с короткими боковыми цепями) (2) удаляют из масляного сырья в процессах селективной и адсорбционной очистки и превращают их в нафтеновые и парафиновые при гидрогенизационных процессах. Однако полное удаление этих углеводородов может привести к ухудшению других свойств масел, например стабильности к окислению. Существует оптимальная глубина очистки селективным растворителем, которая изменяется в зависимости от состава масляного сырья.
- Удаление парафиновых и циклических углеводородов с длинными боковыми цепями (3) кристаллизующихся при пониженных температурах, осуществляют в процессе депарафинизации с целью получения низко застывающих масел.
- Серо-, кислород- и азотсодержащие соединения (4) удаление при гидрогенизационных процессах (гидроочистка, гидрокрекинг)

Назначение процессов депарафинизации нефтяного сырья

Одним из основных требований к нефтепродуктам является их подвижность при низких температурах. Потеря подвижности топлив и масел объясняется способностью твердых углеводородов (парафинов и церезинов) при понижении температуры кристаллизоваться из растворов нефтяных фракций, образуя структурированную систему, связывающую жидкую фазу.

Для получения нефтяных масел с низкой температурой застывания в технологию их производства включен процесс депарафинизации, цель которого удаление твердых углеводородов.

В то же время твердые углеводороды, нежелательные в маслах и топливах, являются ценным сырьем для производства парафинов, церезинов и продуктов на их основе, находящих широкое применение.

Назначение процессов депарафинизации нефтяного сырья

Твердые углеводороды нефтяных фракций, так же как и жидкие, представляют собой сложную смесь парафиновых углеводородов нормального строения разной молекулярной массы; изопарафиновых, различающихся по числу атомов углерода в молекуле, степени разветвленности и положению заместителей; нафтеновых, ароматических и нафтеноароматических с разным числом колец и длинными боковыми цепями как нормального, так и изостроения.

Химический состав твердых углеводородов зависит от температурных пределов выкипания фракции. В низкокипящих масляных фракциях нефти содержатся в основном твердые парафиновые углеводороды нормального строения. С повышением пределов выкипания содержание н-алканов снижается, а концентрация из парафиновых и циклических углеводородов, особенно нафтеновых, возрастает.

Основным компонентом твердых углеводородов (церезинов), концентрирующихся в остатке от перегонки мазута, являются нафтеновые углеводороды с боковыми цепями преимущественно изостроения; в меньшем количестве в них содержатся парафиновые и ароматические углеводороды с длинными алкильными цепями. С повышением температур выкипания фракции растет общее содержание твердых углеводородов и повышается их температура плавления.

Методы депарафинизации нефтяных фракций

Депарафинизации нефтепродуктов может осуществляться несколькими методами:

- •кристаллизацией твердых углеводородов при охлаждении сырья;
- кристаллизацией твердых углеводородов при охлаждении раствора сырья в избирательных растворителях;
- комплексообразованием с карбамидом;
- каталитическим превращением твердых углеводородов в низкозастывающие продукты;
- •адсорбционным разделением сырья на высоко- и низко застывающие компоненты;
- биологическим воздействием.

Наиболее широкое промышленное применение получили методы депарафинизации с использованием избирательных растворителей; реже используют процесс карбамидной депарафинизации, главным образом для понижения температуры застывания дистиллятов дизельных топлив.

Методы депарафинизации с использованием избирательных

Этот процесс основар а транор и терримости твердых и жидких углеводородов в некоторых растворителях при низких температурах и может применяться для масляного сырья любого фракционного состава. Твердые углеводороды масляных фракций ограниченно растворяются в полярных и неполярных растворителях.

Растворитель, применяемый в процессе депарафинизации, должен:

- при температуре процесса растворять жидкие и не растворять твердые углеводороды сырья;
- обеспечивать минимальную разность между температурами депарафинизации (конечного охлаждения) и застывания депарафинированного масла и способствовать образованию крупных кристаллов твердых углеводородов. Упомянутая разность температур называется температурным эффектом депарафинизации (ТЭД);
- иметь не слишком высокую и не слишком низкую температуру кипения, так как высокая температура кипения приводит к повышению энергетических затрат и способствует окислению углеводородов при регенерации растворителя, низкая -- вызывает необходимость проведения процесса при повышенном давлении;
- иметь низкую температуру застывания, чтобы не кристаллизоваться при температуре депарафинизации и не забивать фильтровальную ткань;
- быть коррозионно-неагрессивным;
- быть доступным, по возможности дешевым и приемлемым с точки зрения санитарных норм.

Депарафинизация избирательными растворителями

Для депарафинизации предложено большое число как полярных, так и неполярных растворителей. Однако только некоторые из них нашли промышленное применение (кетоны, хлорорганические соединения, сжиженный пропан, легкая фракция бензина - нафта). В настоящее время наиболее распространен процесс депарафинизации с использованием полярных растворителей -- низкомолекулярных кетонов, в частности метилэтилкетона и ацетона; иногда применяют метилизобутилкетон или сжиженный пропан.

Процесс депарафинизации является наиболее сложным, трудоемким и дорогостоящим в производстве нефтяных масел. Его эффективность и экономичность зависят, в частности, от скорости фильтрования суспензий; последняя в конечном итоге определяется структурой кристаллов твердых углеводородов, образующихся в процессе охлаждения сырья с растворителем, так как от их размеров зависят полнота и скорость отделения твердой фазы от жидкой.

Кристаллизация твердых углеводородов начинается с выделения из пересыщенного раствора зародышей кристаллов. При дальнейшем охлаждении раствора кристаллизация протекает на уже образовавшихся центрах кристаллизации. Для получения в процессе кристаллизации крупных кристаллов необходимо, чтобы число зародышей, образующихся в начальной стадии охлаждения, было невелико, так как дальнейшая кристаллизация происходит на этих центрах. При большом числе зародышей образуется мелкокристаллическая структура.

Принципиальная схема установки депарафинизации

Процесс депарафинизации с применением избирательных растворителей осуществляется непрерывно и слагается из следующих стадий:

- смешения сырья с растворителем;
- термической обработки смеси;
- постепенного охлаждения полученного раствора сырья до заданной температуры, в результате чего из раствора выделяются кристаллы твердых углеводородов;
- отделения твердой фазы от жидкой;
- регенерации растворителя из растворов депарафинированного масла и гача или петролатума.

Принципиальная схема установки депарафинизации

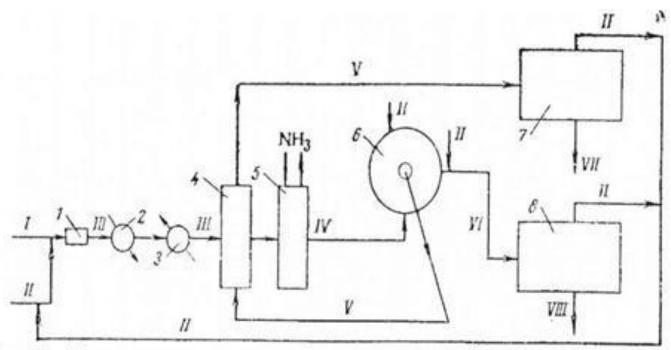


Рис. 51. Принципиальная схема установки депарафинизации с использованием избирательных растворителей:

І — смеситель; 2 — паровой подогреватель; 3 — водяной холодильник; 4 — регенеративный кристаллизатор; 5 — аммиачный кристаллизатор; 6 — вакуумный фильтр; 7 — отделение регенерации растворителя из раствора депарафинированного масла; 8 — отделение регенерации растворителя из раствора гача или петролатума.

Линии: I — сырье; II — растворитель; III — раствор сырья; IV — суспензия твердых углеводородов; V — раствор депарафинированного масла; VI — раствор гача или петролатума; VII — депарафинированное масло; VIII — твердые углеводороды (гач или петролатум).

Принципиальная схема установки депарафинизации

Депарафинируемое сырье I и растворитель II (рис.) в смесителе 1 смешивают в определенном соотношении и подвергают термообработке в паровом подогревателе 2. Если температура сырья, подаваемого на установку, выше 60 °C, то термообработку не проводят. Далее раствор сырья III охлаждается сначала в водяном холодильнике 3, потом регенеративных кристаллизаторах 4, где хладоагентом СЛУЖИТ депарафинированного масла (фильтрат) V, и, наконец, в аммиачных кристаллизаторах 5, в которых хладоагентом является аммиак. Если температура конечного охлаждения раствора сырья ниже - 30 °C, то в качестве хладоагента на последней стадии охлаждения используют этан. Холодная суспензия твердых углеводородов в растворе масла IV поступает через приемник (на схеме не показан) в фильтры 6 (на некоторых установках -в центрифуги) для отделения твердой фазы от жидкой. Осадок твердых углеводородов на фильтре промывается холодным растворителем II и поступает в шнековое устройство, куда также добавляют некоторое количество растворителя II, обеспечивающее возможность перемещения осадка. В результате фильтрования получают раствор депарафинированного масла V, содержащий 75-80% растворителя, и раствор твердых углеводородов (гача или петролатума) VI с относительно небольшим содержанием масла. Оба раствора направляют в секции регенерации растворителя 7 и 8.

Полученное после регенерации растворителя депарафинированное масло VII поступает на доочистку, а твердые углеводороды VIII (гач в случае переработки дистиллятного и петролатум - остаточного сырья) - на дальнейшую переработку для производства парафина и церезина. Регенерированный растворитель возвращается на смешение с сырьем, промывку осадка и в небольшом количестве - в шнековое устройство. В зависимости от фракционного и углеводородного состава сырья растворитель можно подавать на смешение с сырьем как единовременно, так и порциями в определенные точки по ходу охлаждения сырья.

Принципиальные схемы аммиачного холодильного отделения

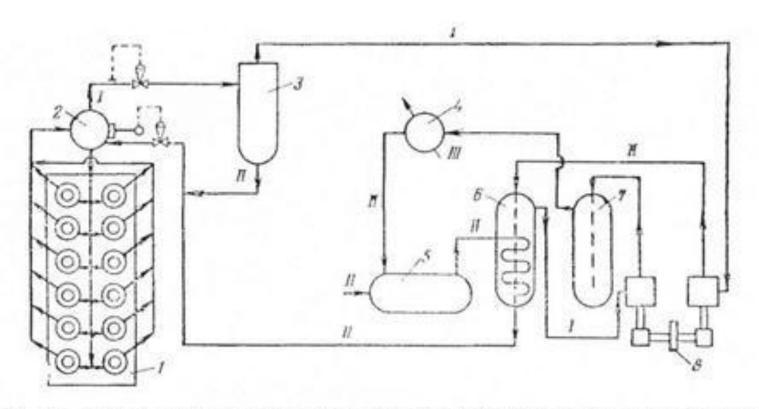
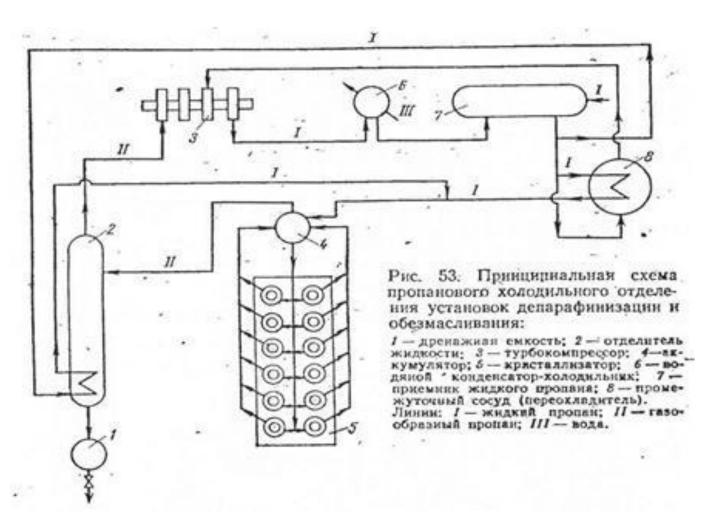


Рис. 52. Принципиальная схема аммиачного холодильного отделения установок депарафинизации и обезмасливания:

I — кристаллизатор; 2 — аккумулятор; 3 — отделитель жидкости; 4 — конденсатор-холодильник; 5 — рабочий ресивер; 6 — промежуточный сосуд; 7 — мяслоотделитель; 8 — конпрессор. Линии: I — газообразный аммияк; II — жидкий аммияк; III — вода.


Принципиальные схемы аммиачного холодильного отделения

На большинстве установок депарафинизации и обезмасливания в качестве хладоагента применяют аммиак, а в последнее время -- пропан, циркулирующий по замкнутой системе холодильной установки. Принципиальная схема холодильного отделения с использованием аммиака приведена на рис. Пары аммиака I, выходящего из кристаллизатора 1 (испарительная система), через аккумулятор 2 поступают в отделитель жидкости 3 (попадание жидкости в цилиндры компрессора может вывести его из строя), а затем - на I ступень сжатия двухступенчатого компрессора 8 и под давлением 0,25--0,3 МПа нагнетаются в промежуточный сосуд 6, в котором они доохлаждаются за счет испарения жидкого аммиака II, подаваемого из рабочего ресивера 5.

Из промежуточного сосуда 6 пары аммиака поступают в цилиндр высокого давления соответствующего компрессора, где сжимаются до давления конденсации (1--1,2 МПа). После этого через маслоотделитель 7 пары вводятся в вертикальные кожухотрубчатые водяные конденсаторы-холодильники 4. Сконденсировавшийся аммиак II стекает в рабочий ресивер 5, откуда поступает в змеевик промежуточного сосуда 6, где переохлаждается от 34--36 °C (температура конденсации) до 0--5°C за счет испарения аммиака, содержащегося в сосуде.

Переохлажденный аммиак поступает в аккумулятор 2, а затем в кристаллизатор 1, где за счет его испарения происходит охлаждение суспензии твердых углеводородов в растворе масла. Жидкий аммиак подается из промежуточного сосуда 6 в аккумулятор 2 через клапан, связанный с регулятором уровня. Температура охлаждаемой смеси на выходе из кристаллизатора

Принципиальные схемы пропанового холодильного отделения

Принципиальные схемы пропанового холодильного отделения

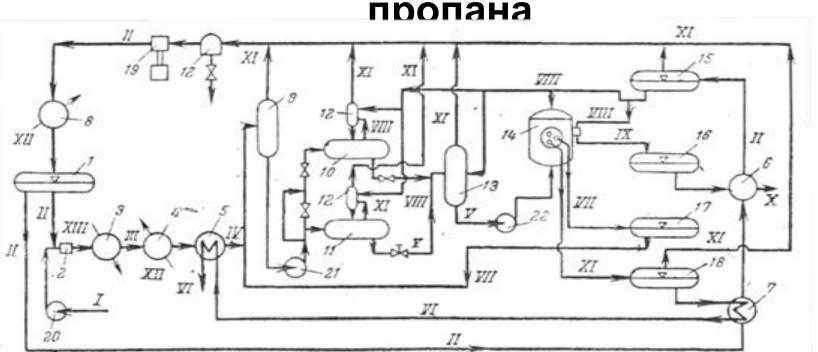
Принципиальная схема холодильного отделения с использованием жидкого пропана дана на рис, 8. Пары пропана II из аккумулятора 4 через отделитель жидкости 2 поступают на прием I ступени четырехступенчатого турбокомпрессора 3, с выхода которого направляются в конденсатор-холодильник 6, где конденсируются, после чего жидкий пропан стекает в приемник 7. Оттуда жидкий пропан поступает в трубное пространство промежуточного сосуда 8, где охлаждается за счет испарения пропана, подаваемого в межтрубное пространство и отсасываемого II (приемной ступенью турбокомпрессора.

Часть жидкого пропана, минуя промежуточный сосуд, подается в змеевик отделителя жидкости 2, где охлаждается и далее смешивается с потоком жидкого пропана I, охлажденного в промежуточном сосуде и направляемого в кристаллизатор 5. Из нижней части отделителя жидкости 2 пропан стекает в дренажную емкость 1, откуда периодически выдавливается в приемник 7 и возвращается в систему.

Депарафинизация избирательными растворителями

При замене аммиачного охлаждения на пропановое к установке предъявляются более высокие требования по соблюдению правил техники безопасности, которые обусловлены низкими пределами взрываемости пропана, отсутствием характерного запаха и возможностью скопления его в низких местах территории установки. Даже незначительное нарушение герметичности системы может вызывать сильное переохлаждение участка трубопровода (до - 40° С) и, как следствие, его разрушение.

На установках глубокой (низкотемпературной) депарафинизации, чтобы охладить растворы до минус 60 - минус 62 °С, температура хладоагента в кристаллизаторах должна быть минус 62 - минус 65 °С. Для этого при использовании аммиака требуется значительный вакуум (температура кипения аммиака при атмосферном давлении равна -33,4 °С, при 17,3 кПа около - 70 °С, а при -77,3°С аммиак кристаллизуется). Поэтому при глубокой депарафинизации конечное охлаждение проводят в этановых кристаллизаторах, выполненных из легированной стали.


принципиальная технологическая схема установки депарафинизации в растворе пропана

При депарафинизации в растворе сжиженного пропана существуют два варианта охлаждения раствора сырья: с хладоагентом, обычно используемым в последней стадии охлаждения аммиаком и за счет испарения из раствора самого пропана, которое осуществляется в вертикальных или горизонтальных аппаратах, действующих попеременно.

Скорость охлаждения растворов в них регулируется скоростью снижения давления. Следовательно, в данных аппаратах испарение пропана зависит от отсоса его паров, для чего на установках этого типа предусмотрены компрессоры.

Необходимую кратность пропана к сырью поддерживают, непрерывно добавляя пропан по мере его испарения или добавляя охлажденный пропан в конечной стадии охлаждения.

Принципиальная технологическая схема установки депарафинизации в растворе

1-сборник жидкого пропана; 2- смеситель; 3- паровой подогреватель; 4, 8- холодильники; 5-7 - теплообменники; 9- промежуточная емкость для раствора сырья; 10, 11 - пропановые кристаллизаторы самоохлаждення периодического действия, работающие попеременно; 12-каплеотоойникн; 13 - приемник суспензии петролатума; 14-барабанный фильтр, работающий под давлением; 15-ёмкость для охлажденного пропана; 16- приемник суспензии петролатума; 17-приемник пропана от промывки осадка на фильтрах; 15-приемник раствора депарафинированного масла; 19-компрессор; 20-22- насосы.

Принципиальная технологическая схема установки депарафинизации в растворе пропана

Линии: І -сырье; ІІ -пропан; ІІІ-раствор сырья; ІV-охлажденный раствор сырья; V-суспензия петролатума; VI-раствор депарафинированного масла на регенерацию растворителя; VII -- раствор от промывки осадка на фильтрах; VIII- охлажденный пропан на разбавление лепешки петролатума и на промывку лепешки на фильтрах, на разбавление охлажденного раствора, на добавку к сырьевому раствору для компенсации убыли его при самоохлаждении; ІХ -суспензия петролатума после фильтра; Х-раствор петролатума на регенерацию растворителя; ХІ- пары пропана на компрессию; ХІІ- вода; ХІІІ- водяной пар.

Сырье I подается насосом 20 в диафрагмовый смеситель 2, где смешивается со сжиженным пропаном II, поступающим из сборника 1 (рис. 62). Смесь подвергается термической обработке в паровом нагревателе 3 до 50--70 °C, а затем раствор III охлаждается водой в холодильнике 4 до 35-40 °C. Дополнительно раствор охлаждается холодным фильтратом VI в теплообменнике 5. Охлажденный раствор IV поступает в промежуточную емкость 9, откуда насосом 21 подается в один из попеременно действующих кристаллизаторов 10 и II, где за счет снижения давления происходит испарение пропана VIII, подаваемого в кристаллизатор из сборника 15 через теплообменник (на схеме не показаны) непосредственно в раствор, охлажденный до минус 30 - минус 45 °C.

В сборнике 15 пропан охлаждается в результате испарения части его. Суспензия V собирается в приемнике 13 и далее насосом 22 подается в барабанные фильтры 14, работающие под избыточным давлением-25--50 кПа (0,25--0,50 кгс/см²). Раствор депарафинированного масла VI поступает в приемник 18, откуда, пройдя теплообменники 7 и 5, направляется в секцию регенерации растворителя. Раствор от промывки осадка VII собирается в приемник 17 и затем добавляется к охлаждаемому раствору сырья IV перед кристаллизаторами 10 и 11. Осадок на фильтре промывается Охлажденным пропаном VIII, поступающим из сборника 15. Кроме того, пропан добавляется к петролатуму для разжижения осадка, облегчения транспортирования его шнеком и подачи в приемник 16, откуда через теплообменник 6 раствор петролатума X поступает в регенерационную часть установки. Осадок с барабана фильтра отдувается циркулирующим газообразным пропаном, подаваемым газодувкой. Пары пропана XI, пройдя брызгоотделитель 12, отсасываются компрессором 19, охлаждаются в холодильнике 8 и. поступают в сборник жидкого пропана 1.

Основная масса пропана как из раствора депарафинированного масла VI, так и из раствора петролатума X, отгоняется под давлением 1,5--1,7 МПа в паровых испарителях, аналогичных используемым на установках деасфальтизации масел. Остатки пропана удаляют в отпарных колоннах, работающих под давлением, близким к атмосферному. Из отпарных колонн смесь паров пропана и воды поступает в конденсатор смешения, затем в брызгоотделитель и на компрессор.

Процессы депарафинизации избирательными растворителями

Процесс депарафинизации «Эделеану». Растворителем служит смесь дихлорэтана (40 - 70 %) - осадителя твердых углеводородов и метиленхлорида (60 - 30 %) - растворителя некристаллизующихся компонентов сырья. Процесс проводится на тех же установках, что и кетоновая депарафинизация. Основные достоинства растворителя процесса «Эделеану»:

- 1) низкий температурный градиент (0-1 °C) депарафинизации, что дает существенную экономию холода;
 - 2) **высокая скорость фильтрования** (до 200 кг/м²-ч);
- 3) растворители **не горят и не образуют взрывоопасных смесей**, в результате отпадает необходимость в системе инертного газа.

Недостатком растворителей является низкая их **термическая стабильность** - они разлагаются при 130-140 ° С с образованием коррозионно-агрессивных продуктов разложения.

Процессы депарафинизации избирательными растворителями

Процесс депарафинизации «Дилчил» применяется для депарафинизации дистиллятных и остаточных рафинатов с использованием смеси МЭК с метилизобутилкетоном или толуолом. Процесс отличается от традиционных использованием весьма эффективных кристаллизаторов «Дилчил» оригинальной конструкции. В кристаллизаторах этого процесса используется прямое впрыскивание предварительно охлажденного в аммиачном холодильнике растворителя и поток нагретого в паровом подогревателе депарафинируемого сырья. В результате такой скоростной кристаллизации образуются разрозненные компактные слоистые кристаллы сферической формы. Внутренний слой этих кристаллов состоит из первичных зародышей из высокоплавких парафинов, а внешний слой образован из кристаллов низкоплавких углеводородов. Суспензия из кристаллизатора «Дилчил» после охлаждения до требуемой температуры в скребковых аммиачных кристаллизаторах затем направляется в вакуумные фильтры.

Благодаря такой компактной сферической форме кристаллов процесс можно вести при **высоких скоростях фильтрования** и достигать высоких выходов депарафинизата при одновременном снижении вдвое содержания масла в гаче. Температурный градиент депарафинизации в этом процессе составляет от 0 до 7 °C. Для предотвращения образования льда в оборудовании, работающем с холодным растворителем, применяют систему обезвоживания растворителя.

Обезмасливание гача и петролатума

Процесс обезмасливания гача и петролатума предназначен для получения парафинов и церезинов. Обезмасливание можно проводить двумя методами:

- 1) кристаллизацией твердых углеводородов без применения растворителей, которая осуществляется фильтр-прессованием с последующим потением полученного гача;
- 2) кристаллизацией твердых углеводородов из раствора сырья в избирательных растворителях при охлаждении раствора.

Современные процессы депарафинизации и обезмасливания

В СНГ и за рубежом разработаны и внедрены в промышленность установки, на которых <u>одновременно</u> осуществляются процессы депарафинизации рафинатов и обезмасливания гачей или петролатумов. Предпосылкой к созданию таких установок явилось использование при депарафинизации и обезмасливании одних и тех же растворителей и однотипного оборудования.

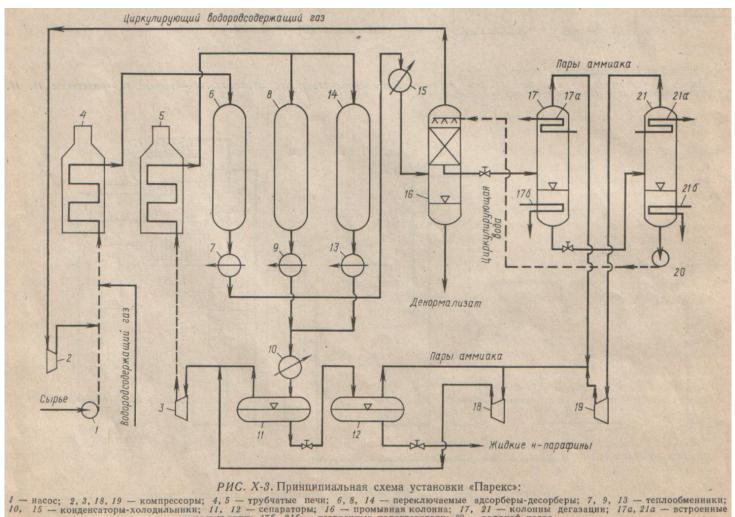
Совмещение процессов экономически выгодно, так как при этом сокращается число операций по регенерации растворителя и уменьшаются расходы на перемещение жидкостей. Существует несколько вариантов совмещенных схем депарафинизации и обезмасливания, различающихся по числу ступеней и температурам фильтрования, а также по ассортименту получаемой продукции.

Например, трехступенчатая схема: в І-ступени фильтрования осуществляется процесс депарафинизации рафината, а во ІІ и ІІІ ступенях - процесс обезмасливания. Осадок, полученный на фильтрах ІІ - ступени, разбавляется в шнеке теплым растворителем и подается в ІІІ ступень фильтрования, где после промывки осадка получается раствор товарного парафина или церезина, а фильтрат ІІ - ступени используется для разбавления суспензии сырья. Фильтрат ІІІ-ступени после регенерации растворителя можно использовать для производства защитных восков, для шинных и других резин или добавлять к сырью каталитического крекинга.

Карбамидная депарафинизация

ДИЗЕЛЬНЫХ ТОПЛИВКарбамидная депарафинизация фракций дизельных топлив понижает температуру застывания до минус 45 °C для зимних дизельных топлив и до минус 60 °C для арктических дизельных топлив. Карбамид (мочевина) (NH2)2CO, кристаллическое легко растворимое в воде и низших спиртах вещество с температурой плавления 132,5 °C, является основным высококонцентрированным азотным удобрением, получаемым при синтезе аммиака NH3 с диоксидом углерода C02. Высокоочищенный карбамид при пониженных температурах образует кристаллические комплексы с нормальными алканами (реакция с выделением тепла). При повышении температуры комплекс разлагается (разрушается) на фракцию выделенных жидких парафинов и карбамид. Для снижения вязкости и улучшения контакта карбамида с дизельным топливом применяют разные растворители - изопропиловый и изо-бутиловый спирты, используют активаторы комплексообразования - метанол, ацетон и др. Перемешивание карбамида и дизельного топлива при температуре 20-30 °C происходит в течение 30-50 мин в реакторе с мешалкой или в трубчатом реакторе (одном или последовательно в трех) с принудительным внешним перемешиванием с помощью насосов. Съем тепла производится охлаждающей водой или непосредственно в реакторе через внутреннее трубное устройство, или во внешних холодильниках при циркуляции через них реакционной смеси. Отделение образовавшегося комплекса - сырца от депарафинированного дизельного топлива производится отстаиванием, фильтрованием или центрифугированием.

Комплекс-сырец (белый сметанообразный продукт) может увлекать с собой некоторое количество дизельного топлива, попадающее при разложении комплекса в парафины. Для исключения такого загрязнения парафинов предусматривается предварительная двух- или трехкратная промывка комплекс-сырца тяжелой бензиновой фракцией 180-220 гр.С с ее расходом от 40 до 140 % на дизельное топливо. Комплекс-сырец в смесителе смешивается с бензиновой фракцией и потом в отстойнике разделяется на промытый комплекс и смесь бензиновой фракции с извлеченным из комплекса-сырца дизельным топливом, направляемую в ректификационную колонну для разделения на компонент летнего дизельного топлива и бензиновую фракцию, вновь используемую в процессе для отмывки комплекса-сырца.


Промытый комплекс подогревается и разрушается при температуре 75-80 °C в трубчатом подогревателе водяным паром и в отстойнике разделяется на жидкие парафины и спиртовый раствор карбамида. Содержание карбамида в спиртовом растворе 38-48 мае. %, концентрация изопропилового спирта 62-68 %, расход карбамидного спиртового раствора около 4 т/т дизельного топлива. Карбамидная депарафинизация оставляет в получаемых парафинах опасные примеси растворителей и активаторов (спирты, метанол, ацетон и др.), поэтому парафины подлежат дальнейшей тщательной очистке. Мощность установок карбамидной депарафинизации составляет 0,5-1,0 млн т сырья в год и 35-70 тыс. т/год по жидким парафинам, выход которых равен около 7 мае. % и выход депарафинированной дизельной фракции около 93 мас. %. В настоящее время ограничивают применение карбамидной депарафинизации как устаревший процесс.

Адсорбционная депарафинизация

Адсорбционная депарафинизация фракций дизельного топлива на цеолитах типа А позволяет избирательно удалять из них только нормальные алканы. Адсорбционное выделение нормальных алканов С10-С18 (жидкие парафины) из фракции 200-320 °С может осуществляться процессом «Парекс» (ГДР). Предварительно очищенная фракция нормальных алканов С10-С18 является сырьем для производства высококачественных (биологически разлагаемых) поверхностно-активных веществ (ПАВ), для микробиологического синтеза белкового кормового вещества (в последнее десятилетие мировая микробиология отказалась от парафинов - сырья для БВК, поэтому установки «Парекс» остановлены или реконструированы) и других производств.

Адсорбционная депарафинизация является физическим процессом депарафинизации фракций дизельного топлива с извлечением из сырья до содержащихся в 90-95 мас. сырье н-алканов депарафинированного дизельного топлива с температурой застывания до минус 50 °C, а также жидких парафинов чистотой 98,5-99,0 мас. %, при этом остальные 1,0-1,5 % представляют собой примеси ароматических (0,2-0,5 %) и нафтеновых углеводородов. Выделенные жидкие парафины подвергают дальнейшей глубокой очистке, например, олеумом серной кислоты до остаточного содержания ароматики 0,01 мас. % и менее с целью удаления ароматических углеводородов (3,4-бензпирена). канцерогенных Депарафинированная фракция 200-320 °C используется как компонент низкозастывающих дизельных топлив.

Технологическая схема процесса «Парекес»

1 — насос; 2, 3, 18, 19 — компрессоры; 4, 5 — трубчатые печи; 6, 8, 14 — переключаемые адсорберы-десорберы; 7, 9, 13 — теплообменники; 10, 15 — конденсаторы-холодильники; 11, 12 — сепараторы; 16 — промывная колонна; 17, 21 — колонны дегазации; 17а, 21а — встроенные холодильники; 17б, 21б — встроенные подогреватели; 20 — водяной насос.

Технологическая схема процесса «Парекес»

Основные секции установки «Парекс» следующие: нагревательная, в которой смесь сырья с водородсодержащим газом нагревается в теплообменниках, а затем в змеевике печи (в этой же секции, но в отдельной печи нагревается аммиак перед направлением его в слой адсорбента); адсорбции и десорбции с тремя периодически переключаемыми вертикальными аппаратами (один — адсорбер, а два других в данный период — десорберы); сепарации с двумя параллельными линиями; эта секция предназначена для разделения смесей, выходящих из адсорбера (линия «денормализата») и из двух аппаратов, эксплуатируемых в данный промежуток времени как десорберы (линия н-парафинов).

Технологическая схема установки представлена на рисунке; здесь три контура циркуляции: водородсодержащего газа, аммиака — вытеснителя — и воды, поглощающей пары аммиака в промывной колонне.

Режим процесса парофазной адсорбции: температура 300—400 °С, давление 0,5—1,0 МПа; длительность адсорбции примерно в два раза меньше продолжительности десорбции. Между этими стадиями в течение непродолжительного времени адсорбент продувается. Окислительную регенерацию адсорбента проводят обычно после 6000—8000 ч его эксплуатации

Технологическая схема процесса «Парекес»

К сырью, подаваемому насосом /, присоединяются свежий и циркулирующий водородсодержащий газ (нагнетается компрессором 2). После нагрева в теплообменниках (условно показано пунктирной линией, ведущей к печи 4} и змеевике печи 4 смесь поступает в адсорбер 6 с неподвижным слоем адсорбента, извлекающим из сырья н-парафины. По выходе из адсорбера денормализат в смеси с водородсодержащим газом и аммиаком (остатка от предшествующей операции — десорбции) охлаждается в теплообменнике 7. Пройдя далее конденсатор-холодильник 15, смесь разделяется в промывной колонне 16 на две части: жидкую—охлажденный конденсат денормализата — и газопаровую. В верхней части колонны 16 пары аммиака поглощаются циркулирующей водой, поступающей далее в две последовательно соединенные колонны 17 и 21 для дегазации. Здесь из водного раствора удаляется аммиак; пары аммиака после ступенчатого сжатия компрессорами 18, 19 и 3 используются в процессе десорбции.

Выходящий из верхней части колонны 16 водородсодержащий газ сжимается компрессором 2 и, как рециркулят, присоединяется к сырью.

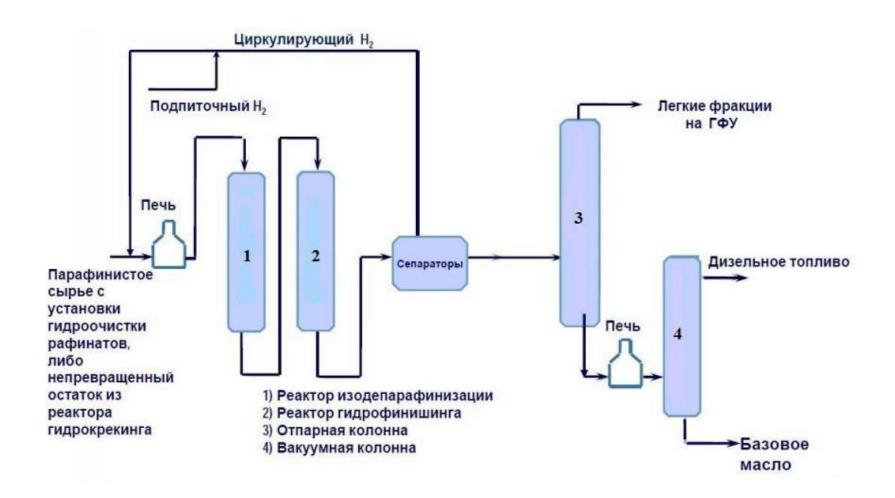
Работающие в стадии десорбции аппараты 8 и 14 продуваются перегретым в змеевике печи 5 газообразным аммиаком. Последний в смеси с вытесненными к-парафинами проходит теплообменники 9 и 13, а затем конденсатор-холодильник 10; конденсат отделяется от газообразного аммиака в сепараторе 11. В работающем при менее высоком давлении сепараторе 12 из жидкости выделяется растворенный аммиак. Вспомогательным компрессором 18 аммиак подается на прием компрессора 3 повышенного давления. В секции адсорберов — десорберов коммуникации системы автоматического переключения аппаратов с одной операции на другую не показаны.

Режим процесса парофазной адсорбции: температура 300—400 °C, давление 0,5—1,0 МПа; длительность адсорбции примерно в два раза меньше продолжительности десорбции. Между этими стадиями в течение непродолжительного времени адсорбент продувается. Окислительную регенерацию адсорбента проводят обычно после 6000—8000 ч его эксплуатации

Процесс каталитической изодепарафинизации

В 1993 году фирмой Chevron был разработан первый процесс изодепарафинизации масляных фракций процесс ISODEWAXING. В 1997 близкий по технологическому оформлению и химизму процесс был предложен фирмой Mobil – процесс Mobil Selective Dewaxing (MSDW). В этих процессах температуры текучести сырья достигается не за счет гидрокрекинга н-парафинов сырья, а за счет их гидроизомеризации. Изопарафины, образующиеся в реакциях гидроизомеризации, остаются в составе целевого продукта, что приводит к значительному увеличению выхода депарафинированного Увеличение доли изопарафинов в получаемом продукте не только его низкотемпературные улучшает характеристики, но и такие показатели как летучесть и стойкость к окислению.

Процесс каталитической изодепарафинизации


Процессы изодепарафинизации осуществляются на платиновых катализаторах, содержащих цеолиты специфичной структуры. Катализаторы изодепарафинизации, содержат благородный металл и, таким образом, в наибольшей степени подходят для переработки сырья, содержащего очень малые количества соединений серы и азота, к примеру, продуктов гидрокрекинга вакуумного газойля, гачей или петролатумов.

К преимуществам процесса изодепарафинизации по отношению к процессам сольвентной и каталитической депарафинизации можно отнести следующие факторы:

- 1. Выходы базовых масел для этого процесса выше достигаемых в процессах сольвентной или каталитической депарафинизации. При этом, чем больше содержание н-парафинов в исходном сырье, тем выше эта разница.
- 2. В процессе изодепарафинизации вырабатываются базовые масла с более высокими значениями индекса вязкости, с меньшей летучестью и лучшими показателями стойкости к окислению.
- 3. В процессе изодепарафинизации в качестве побочных продуктов образуются ценные средние дистилляты, которые могут быть использованы в качестве компонентов реактивного и дизельного топлив.

Процессы ISODEWAXING и MSDW близки по своему аппаратурному оформлению.

Технологическая схема процесса ISODEWAXING фирмы Chevron

Технологическая схема процесса ISODEWAXING фирмы Chevron

Как видно из приведенной схемы, в рамках данной технологии парафинистое масляное сырье (остаток гидрокрекинга или продукт гидроочистки рафинатов) проходит две стадии каталитической переработки: стадию изодепарафинизации и стадию гидрофинишинга. Процесс изодепарафинизации (ISODEWAXING) позволяет улучшить низкотемпературные свойства продукта путем изомеризации н-парафинов сырья.

Процесс гидрофинишинга (ISOFINISHING) позволяет улучшить цвет и стабильность изодепарафинизата за счет <u>гидрирования ненасыщенных углеводородов.</u> Продукт гидрофинишинга стабилизируется в отпарной и вакуумной колоннах для удаления побочных легких углеводородов. Следует отметить, что процесс гидрофинишинга с использованием катализаторов на основе благородных металлов является <u>обязательным компонентом</u> <u>технологии изодепарафинизации</u>.

Условия процесса ISODEWAXING

- Показатель Значения Температура процесса, °С 300-400
- Давление, МПа 1,4-20
- Объемная скорость подачи сырья, ч-1 0,2-10
- Соотношение водород:сырье, нл/л 1000:1-1500:1

Микробиологическая депарафинизация нефтянных фракций

Процесс *микробиологической депарафинизации* **нефтяного сырья** основан на способности некоторых микробов избирательно окислять парафиновые углеводороды, преимущественно нормального строения. Применение микроорганизмов для депарафинизации нефтяного сырья, для производства белково-витаминных концентратов БВК), аминокислот, витаминов и других продуктов путем микробиологического синтеза на базе углеводородов основано на сходных биохимических процессах. Их сущность заключается в проникновении углеводородов в клетки микроорганизмов, способности их адаптироваться к углеводородному начальной стадии типу питания в окисления углеводородов.

Основные процессы очистки и разделения нефтяного сырья при помощи адсорбентов. Контактная доочистка

Установка контактной доочистки масел отбеливающими землями (глинами).

Процесс контактной доочистки является завершающей стадией производства масел и предназначен для улучшения цвета масла и снижения коксуемости. В основу процесса положена способность естественных глин адсорбировать на своей поверхности различные вещества. При контактной доочистке применяют тонкодисперсный адсорбент — частицы размером около 0,1 мм.

Целевой продукт процесса — доочищенное базовое масло, побочный — отгон (смесь легких масляных фракций, продуктов разложения и т. п.). Отходом является отработанная земля, пропитанная маслом, содержание которого колеблется в зависимости от вязкости масла от 15 до 50% (масс.) на адсорбент; выход доочищенного масла 96—98% (масс.) на сырье.

Основные процессы очистки и разделения нефтяного сырья при помощи адсорбентов через стационарный слой

Очистка (доочистка) фильтрованием (перколяцией) через неподвижный слой адсорбента один из наиболее старых процессов, применяемых при производстве масел и парафинов. В результате фильтрования из очищаемого продукта извлекаются компоненты/ ухудшающие его свойства, — смолы, производные азота и кислорода, нафтеновые и сульфокислоты и другие нежелательные примеси. При этом улучшается цвет масел, и парафинов, исчезает запах, снижается коксуемость масел.

Перколяционной очистке подвергают масла и парафины, прошедшие очистку избирательными растворителями или кислотно-щелочную очистку. В зависимости от вязкости фильтруемого проукта, с которой связана глубина проникания масла в поры адсорбента и, следовательно, эффективность очистки, фильтрование проводят при температурах от 20, до 100 °C. Парафины фильтруют после их расплавления. Высоковязкие продукты перед фильтрованием растворяют в бензине или лигроине. В зависимости от вязкости очищаемого сырья выбирают адсорбент с соответствующим размером зерен или гранул (0,5—2 мм для вязких масел и 0,3—0,5 мм для маловязких).

Основным аппаратам установки является фильтр — полый цилиндрический аппарат диаметром 2—3 м и высотой (без головок) от 4,5 до 10 м. Вверху и внизу фильтра имеются головки с фильтрующей тканью, задерживающей частицы адсорбента, захваченные отфильтрованным продуктом. В нижней части фильтра предусмотрен люк для осмотра и ремонта. На наружной поверхности фильтра имеются два паровых змеевика с трубами, расположенными по винтовой линии. Змеевики изолированы кожухом из листовой стали, на которой нанесена изоляция из диатомовых плиток. Верхнее днище также покрыто изоляцией. Процесс фильтрования состоит т следующих операций: загрузки адсорбентом; наполнения фильтра продуктом или его раствором; фильтрования; промывки растворителем, продувки воздухом или инертным, газом и пропарки водяным паром; выгрузки адсорбента.

Фильтруемый продукт можно подавать в фильтр сверху вниз или снизу вверх; последний способ подачи предпочтительней, так как в этом случае уменьшается возможность образования каналов в слое адсорбента, ухудшающих контактирования его с продуктом, что снижает эффективность процесса очистки. Первые порции фильтрата (профильтрованного масла), выходящего из фильтра после контакта со свежим адсорбентом, обладают лучшим качеством — они светлые, лишены запаха, не содержат вредных примесей, имеют низкую коксуемость. В дальнейшем качество очищаемых масел значительно ухудшается вследствие уменьшения активности адсорбента.

Основные процессы очистки и разделения нефтяного сырья при помощи адсорбентов

Через стационарный слой Адсорбент считается отработанным, когда качество отобранного после фильтрования продукта (смесь фракций разной глубины очистки) не отвечает предъявляемым требованиям. После этого фильтрование заканчивают и проводят последующие операции. Выгруженный из фильтра адсорбент регенерируют на отдельной установке выжигом в печи при 500—650 °C. На этой же установке подогревается свежий адсорбент. Основным узлом установки является узел фильтрования, состоящий из четырех последовательно включенных фильтров; три из них работают постоянно, в четвертом проводится регенерация адсорбента.

При перколяционной очистке парафинов расплавленный парафин через паровой подогреватель подается снизу в первый фильтр. Из первого фильтра продукт через промежуточную ем-

кость и подогреватель подается во второй фильтр. Из него парафин поступает в емкость, из которой через паровой подогреватель поступает в третий фильтр. По выходе из него очищенный парафин через промежуточную емкость подается в рамный фильтр-пресс, где отделяются мельчайшие частицы адсорбента, далее направляется в емкость очищенного парафина, из которой откачивается в отделение разлива парафина. По окончании цикла первый фильтр переключают на разгрузку и включают четвертый фильтр.

Перколяционный способ очистки имеет следующие недостатки, существенно показатели влияющие технико-экономические процесса: периодичность; (громоздкость установок; большая -продолжительность вспомогательных операций (на загрузку и разгрузку адсорбента в одном фильтре и регенерацию адсорбента затрачивается около 300 ч); большое количество сырья, адсорбента и растворителя, обращающихся в системе фильтров. Кроме того, на большинстве установок адсорбент не регенерируется, что значительно ухудшает технико-экономические показатели процесса.

Непрерывный процесс адсорбционной очистки фильтрованием

Значительные преимущества перед процессами перколяции имеет непрерывный процесс адсорбционной очистки фильтрованием нагретого или растворенного в бензине или лигроине сырья (масляных дистиллятов и деасфальтизатов): непрерывность; возможность получения масел требуемой глубины очистки, вплоть до получения белых масел; непрерывная регенерация отработанного адсорбента; лучшие технико-экономические показатели.

Непрерывную очистку и доочистку в движущемся, слое адсорбента применяют: для доочистки масел и очистки парафинов и церезинов, полученных после всех основных процессов, предусмотренных в поточной схеме производства этих продуктов; для глубокой очистки (взамен селективной) деасфальтизатов и масляных дистиллятов; для разделения деасфальтизатов и масляных дистиллятов на компоненты с получением масел различного углеводородного состава (нафтеновых; нафтеноароматических, ароматических) и выделением нормальных парафиновых углеводородов.

При адсорбционной очистке фильтрованием через движущийся слои адсорбента в адсорбер можно подавать, как непосредственно очищаемый продукт, так и его раствор в бензине. В первом случае продукт должен быть нагрет до температуры, обеспечивающей вязкость масла 5 МПа-с, при которой достигается необходимая четкость разделения. Применяемая для этой цели установка состоит из следующих секций: фильтрования (в противотоке); промыв к и отработанного адсорбента лигроином; регенерации адсорбента выжигом в регенераторе. Такие установки имеют малую пропускную способность, низкую глубину очистки (применялись только для доочистки), сложны в обслуживании, особенно при регенерации адсорбента. Этих недостатков лишен процесс, при котором поступающий на установку продукт предварительно растворяют в бензине. Адсорбент регенерируют в кипящем слое. После очистки получают два продукта, находящие практическое применение.

Очистка и доочистка в движущемся слое адсорбента с применением растворителя. Этот вариант процесса позволяет проводить как глубокую очистку масляного сырья, вплоть до получения белых масел, так и доочищать масла после очистки избирательными растворителями. Адсорбционной очистке подвергают деасфальтизаты с коксуемостью 1,3—2%, и масляные дистилляты с коксуемостью 0,2—0,3%. Поступающее на очистку сырье предварительно растворяют в прямогонной фракции (115—130° С)— безине «Галоша», алкилате, сырье для платформинга и др. Непременным условием при выборе растворителя является надлежащий разрыв (10—15 °С) между температурами начала кипения растворителя и очищаемого продукта (рафината) и между температурами кипения растворителя и десорбции этим растворителем. При выполнении этих требований исключена возможность «замасливания» растворителя из-за смешения его паров с парами очищенного продукта при регенерации растворителя из рафинатного раствора и не происходит испарение десорбента.