

Рис. 1. Диаграмма железо-углерод

ЧУГУНЫ

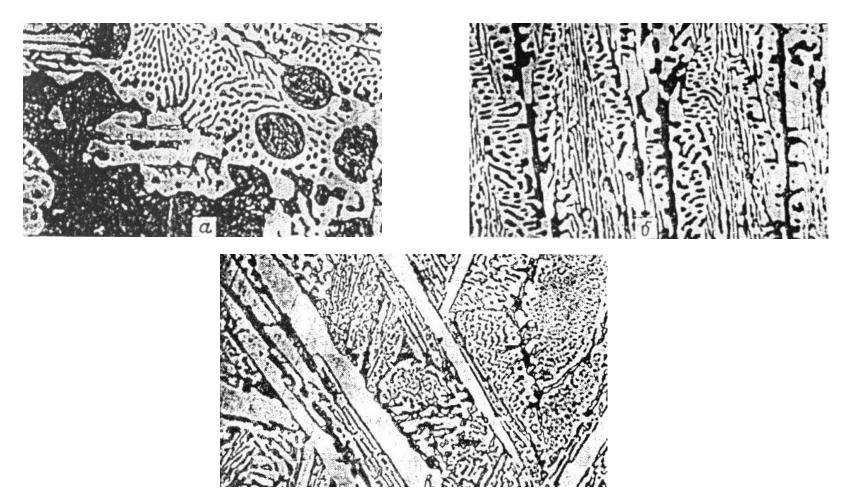


Рис. 2. Микроструктура чугуна: а – доэвтектический чугун – перлит (темные участки) и ледебурит (светлые участки); б – эвтектический чугун – ледебурит (темные участки перлит, светлые – цементит); в – заэвтектический чугун – цементит (светлые пластины)и ледебурит (темные участки – перлит; светлые – цементит), ×500

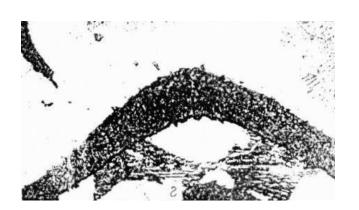


Рис. 3. Структура чугуна, х600

Сравнительная интенсивность влияния элементов на графитизацию (отбеливаемость) выражается следующим рядом:

+ Si, Al, C, Ti, Ni, Cu, P, Zr, |Nb|, W, Mn, Cr, V, S, Mg, Ce, Te, B -

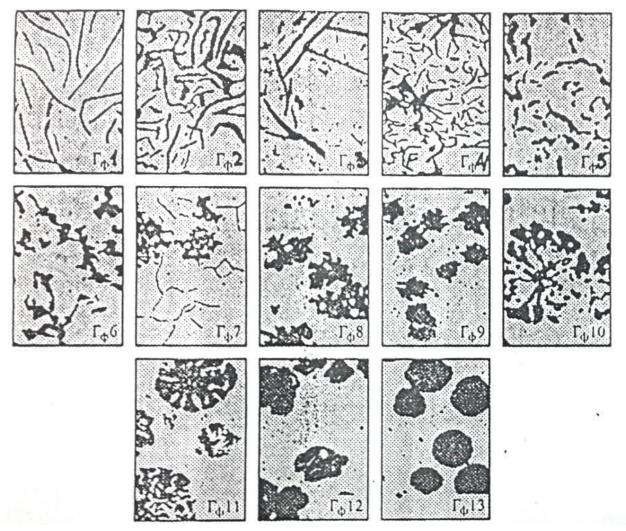


Рис.4а — по форме: Γ_{ϕ} 1- пластинчатая прямолинейная; Γ_{ϕ} 2- пластинчатая завихрённая; Γ_{ϕ} 3- пластинчатая игольчатая; Γ_{ϕ} 4- гнёздообразная; Γ_{ϕ} 5- вермикулярная извилистая; Γ_{ϕ} 6- вермикулярная утолщенная; Γ_{ϕ} 7- нитевидная; Γ_{ϕ} 8- хлопьевидная; Γ_{ϕ} 9- компактная плотная; Γ_{ϕ} 10- шаровидная разорванная; Γ_{ϕ} 11- шаровидная звёздообразная; Γ_{ϕ} 12- шаровидная неправильная; Γ_{ϕ} 13- шаровидная правильная.

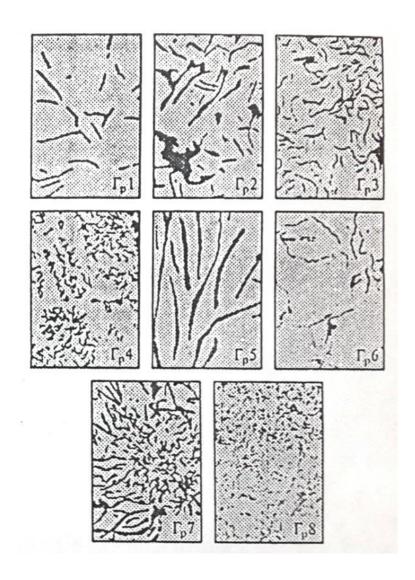


Рис.4б — по распределению: Γ_p 1- равномерное; Γ_p 2- неравномерное; Γ_p 3- колонии пластинчатого графита; Γ_p 4- колонии междендритного графита; Γ_p 5- веточное; Γ_p 6- сетчатое; Γ_p 7- розеточное; Γ_p 8- междендритное точечное.

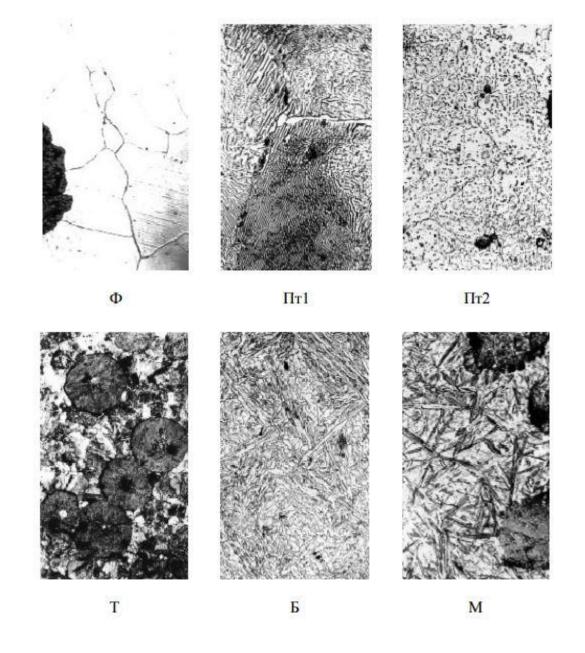


Рис.5. Структура металлической основы чугунов х500

Рис. 6. Структурная диаграмма Грейнера и Клингенштейна

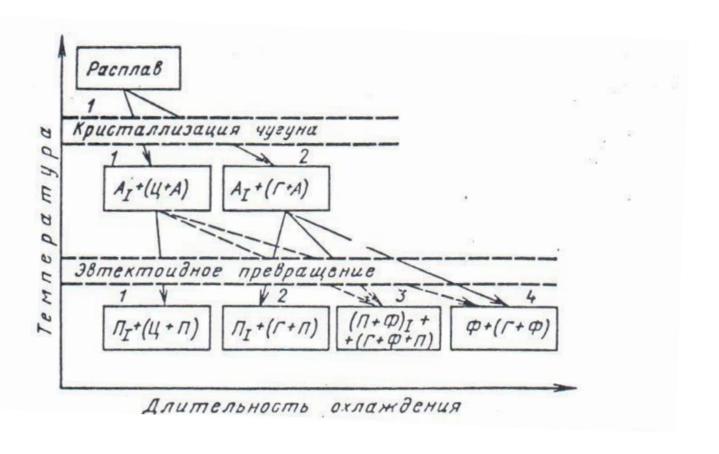


Рис. 7. Диаграмма структурообразования в чугунах при различных скоростях охлаждения

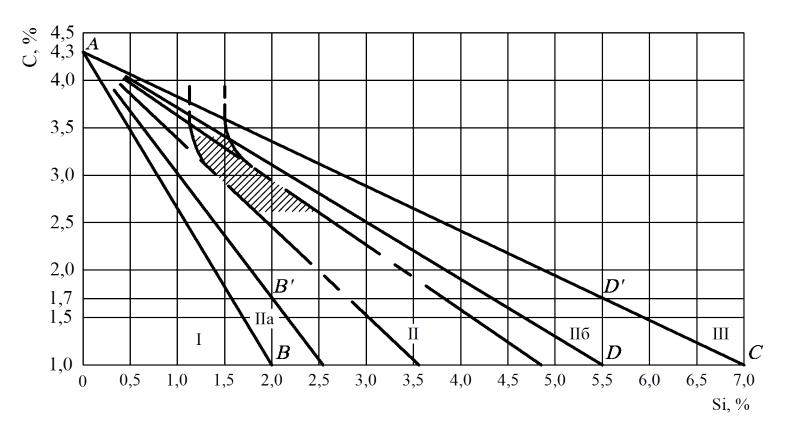


Рис. 8. Диаграмма Маурера: I — белый чугун; II — серый перлитный чугун; IIа — половинчатый чугун; IIб — серый перлитно-ферритный чугун; III — серый ферритный чугун; — — — левая пограничная линия области перлита для отливок с толщиной стенок около 10 мм; — — правая пограничная линия области перлита для отливок с толщиной стенок около 10 мм; — — область перлитной структуры

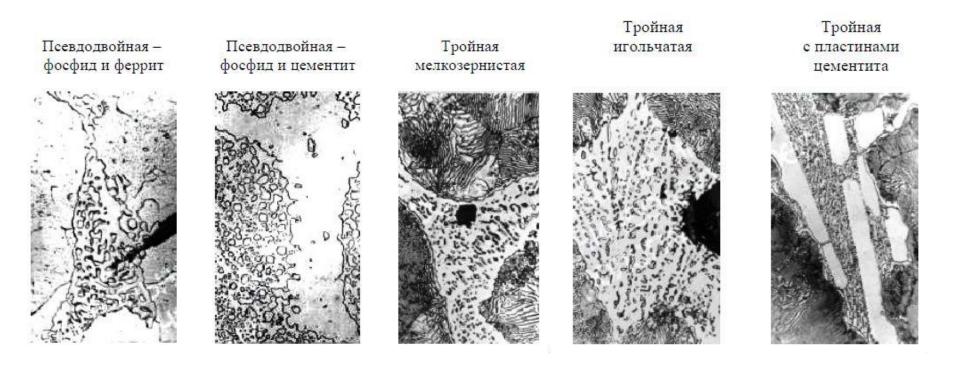
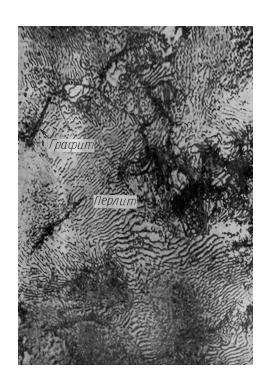
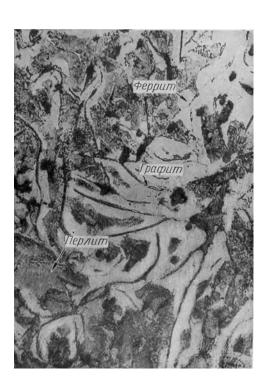




Рис. 9. Структура двойной и тройной фосфидной эвтектики х 500

СЕРЫЙ ЧУГУН

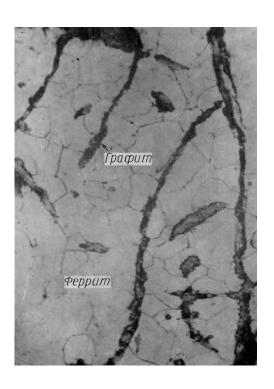


Рис. 10. Микроструктура серого чугуна с пластинчатым графитом х1000 а - перлитного, б - феррито-перлитного, в - ферритного.

Химический состав серого чугуна с пластинчатым графитом (ГОСТ 1412–85). Таб.№1

Марка чугуна	Массовая доля элементов, % (остальное железо)							
	С	Si	Mn	P	S			
				не б	олее			
СЧ10	3,5–3,7	2,2-2,6	0,5-0,8	0,3	0,15			
СЧ15	3,5–3,7	2,0-2,4	0,5-0,8	0,2	0,15			
СЧ20	3,3–3,5	1,4–2,4	0,7-1,0	0,2	0,15			
СЧ25	3,2-3,4	1,4-2,2	0,7-1,0	0,2	0,15			
СЧ30	3,0-3,2	1,3–1,9	0,7-1,0	0,2	0,12			
СЧ35	2,9-3,0	1,2–1,5	0,7–1,1	0,2	0,12			

Временное сопротивление при растяжении и твердость в стенках отливок различного сечения серого чугуна. Таб.№2

M	Толщина стенки отливки, мм								
Марка чугуна	8	15	50	150					
Временное сопротивление при растяжении, МПа, не менее									
СЧ10	120	100	75	65					
СЧ15	180	150	105	80					
СЧ20	CH20 220		140	120					
СЧ25	270	250	180	150					
СЧ30	CY30 330		220	180					
СЧ35	380	350	260	205					
	Тв	ердость, НВ, не бо	олее						
СЧ10	200	190	156	120					
СЧ15	224	210	163	130					
СЧ20	240	230	170	143					
СЧ25	255	245	187	156					
СЧ30	270	260	197	163					
СЧ35	290	275	229	179					

Рекомендуемые минимальные толщины стенок для отливок из серого чугуна. Таб.№3

Масса, кг	Толщина наружной стенки, мм	Толщина внутренней стенки,	
		MM	
Менее 2	3–4	2,5–3,5	
Менее 50	6–8	5–7	
Более 50	10–20	8–16	

КОВКИЙ ЧУГУН

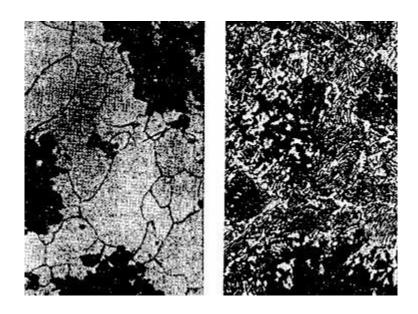


Рис. 11. Микроструктура ковкого чугуна: а – ферритный чугун; б – перлитный чугун, х500

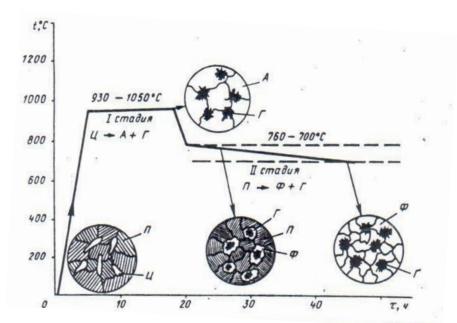


Рис.12. Схема графитизирующего отжига ковкого чугуна для получения перлитно-ферритной и ферритной матрицы

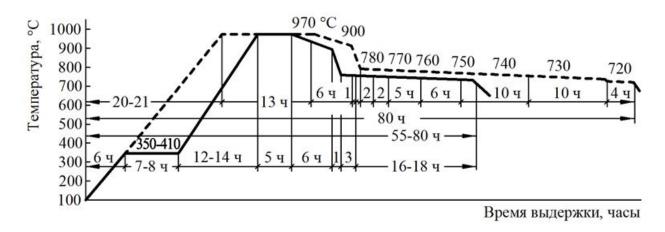


Рис. 13. Режимы отжига ковкого чугуна: сплошные линии – режим ускоренного отжига на ковкий чугун

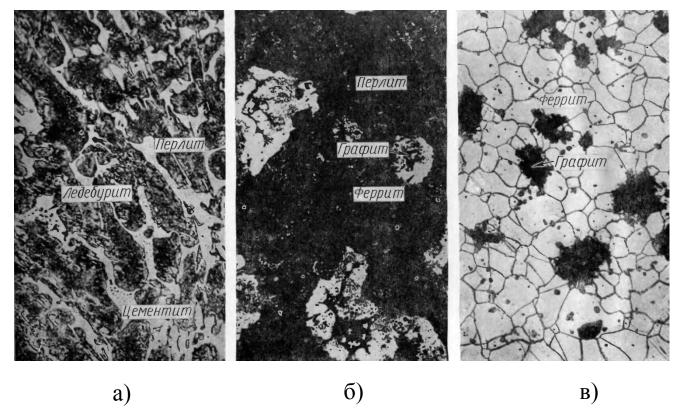


Рис. 14. Изменение структуры чугуна при отжиге, x250. а - до отжига (белый доэвтектический чугун), б - после отжига (после первой стадии графитизации), в - после отжига (после второй стадии графитизации).

Механические свойства и рекомендуемый химический состав ковкого чугуна (ГОСТ 1215–79). Таб.4

Массовая доля элементов, % (остальное железо)			Механические свойства				
Марка чугуна	C Si		Mn	временное сопротивление разрыву, МПа	относительное удлинение, %	твердость, НВ	
				не м	енее		
-:			Ферг	ритный чугун			
КЧ30-6	2,6-2,9	1,0-1,6	0,4-0,6	294	6	100-163	
КЧ33-8	2,6-2,9	1,0-1,6	0,4-0,6	323	8	100-163	
КЧ35-10	2,5-2,8	1,1-1,3	0,3-0,6	333	10	100-163	
КЧ37-12	2,4-2,7	1,2-1,4	0,3-0,6	362	12	100-163	
			Перл	итный чугун			
КЧ45-7	2,5-2,8	1,1-1,3	0,3-1,0	441	7	150-207	
КЧ50-5	2,5-2,8	1,1-1,3	0,3-1,0	490	5	170-230	
КЧ55-4	2,5-2,8	1,1-1,3	0,3-1,0	539	4	192-241	
КЧ60-3	2,5-2,8	1,1-1,3	0,3-1,0	588	3	200-269	
КЧ65-3	2,4-2,7	1,2-1,4	0,3-1,0	637	3	212-269	
КЧ70-2	2,4-2,7	1,2-1,4	0,3-1,0	686	2	241-285	
КЧ80-1,5	2,4-2,7	1,2-1,4	0,3-1,0	784	1,5	270-320	
Примеч	ание. Соде	ржание пр	имесей Р <	$0.10-0.18$ %; S ≤ 0	$0.06-0.20$ %; $Cr \le 0.00$,06–0,08 %	

ВЫСОКОПРОЧНЫЙ ЧУГУН

Механические свойства и рекомендуемый химический состав высокопрочного чугуна (ГОСТ 1215–79). Таб.5

Механические свойства					Средний химический состав, %					
чугуна	σ _в , σ _{0,2} , ΜΠα ΜΠα		HB, δ, Mπa %		С	Si	Mn			
Ферритные чугуны										
ВЧ35	350	220	14001700	22	2,73,8	0,82,9	0,20,6			
ВЧ40	400	250	14002020	15	2,73,8	0,52,9	0,20,6			
			Перлитно-фе	ерритн	ые чугуны					
ВЧ45	450	310	14002250	10	2,73,8	0,52,9	0,30,7			
ВЧ50	500	320	15302450	7	2,73,9	0,82,9	0,30,7			
			Перлит	ные чу	туны		MC 100 30500			
ВЧ60	600	370	19202770	3	3,03,6	2,42,8	0,40,7			
ВЧ70	700	420	22803020	2	3,03,6	2,62,9	0,40,7			
ВЧ80	800	480	24803510	2	3,23,6	2,62,9	0,40,7			
0.8.00.0000000000	v harana		Бейнит	тный ч	угун		80			
ВЧ100	1000	700	27003600	2	*	3,03,8	0,40,7			

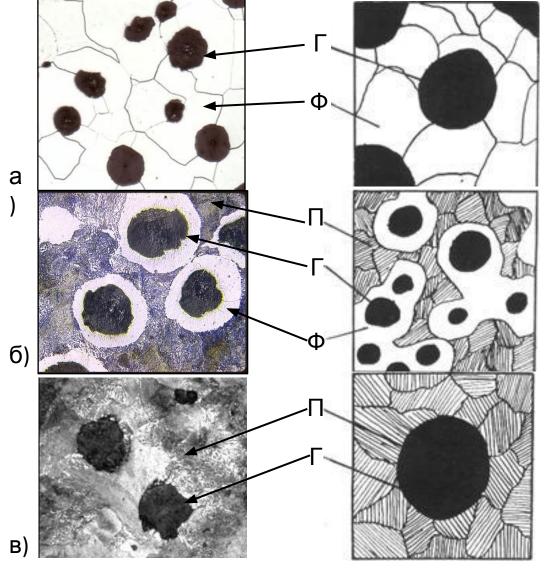
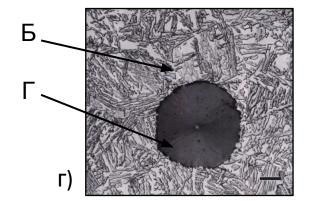



Рис.15. Микроструктура высокопрочного чугуна с шаровидным графитом и ее условная зарисовка. а — на ферритной основе, б — на феррито-перлитной основе, в — на перлитной основе, г — на бейнитной основе.

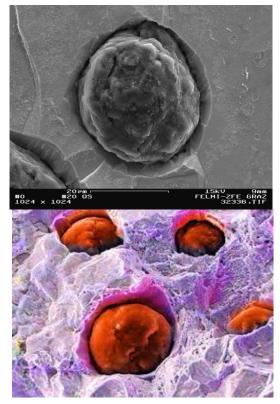


Рис.16. Включения шаровидного графита в высокопрочном чугуне (Электронный микроскоп)

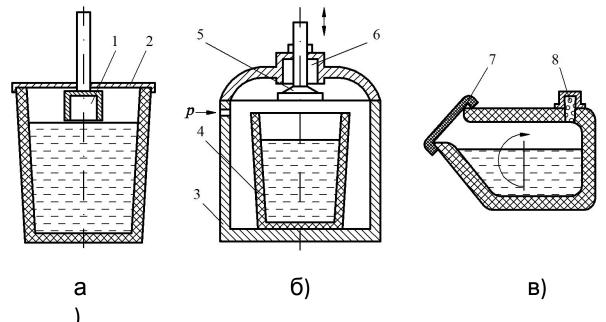


Рис. 17. Способы ввода в расплав сфероидизирующих модификаторов: a — под колокольчиком; δ — в автоклаве; ϵ — в герметизированном ковше-конвертере; 1 — колокольчик; 2 — крышка; 3 — корпус автоклава; 4 — ковш с металлом; 5 — мешалка; 6 — полость для модифи- катора; 7 — крышка ковша; 8 — модификатор

Влияние температуры и состава модификатора на усвоение магния. Таб.6

Модификатор	Усвоение магния, % при температуре, °C				
	1350–1400	1400–1450	1450–1500		
14–16 % Mg, 82–85 % Ni	70–60	60–50	50–40		
17–20 % Mg, 50–55 % Ni,	55–45	45–35	35–30		
25–30 % Si					
12–16 % Mg, 12–20 % Fe,	30–20	20–15	15–10		
остальное Ši					

ЧУГУНА С ВЕРМИКУЛЯРНЫМ ГРАФИТОМ

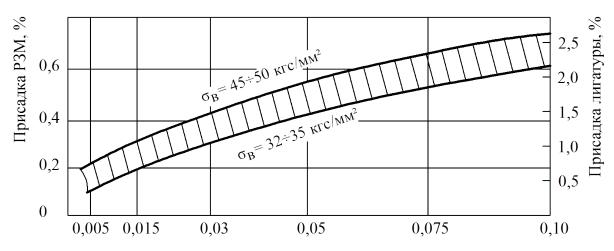


Рис. 19. Влияние содержания серы на величину присадки РЗМ или лигатуры при получении чугуна с вермикулярным графитом

Содержание серы в исходном чугуне, %

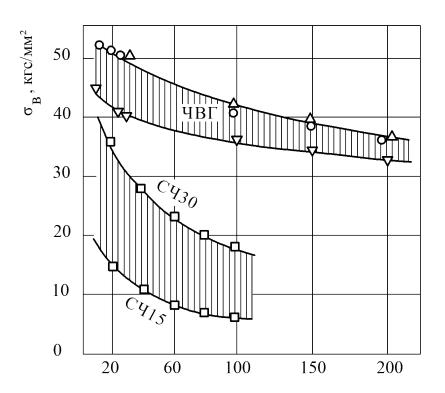


Рис.20. Влияние толщины стенки отливки на прочность чугуна с вермикулярным и пластинчатым графитом

Толщина стенки отливки, мм

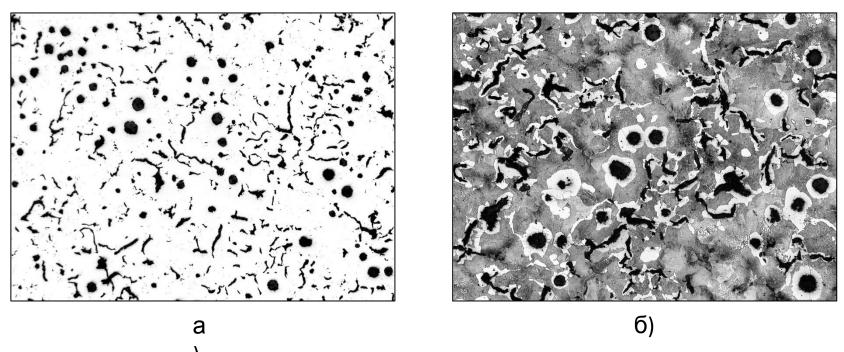
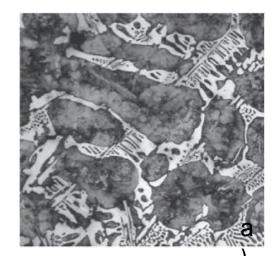


Рис.18. Микроструктура чугуна с вермикулярным графитом x200 : а) на ферритной основе; б) на феррито-перлитной основе.

Механические свойства чугуна вермикулярным графитом. Таб.7

Марка чугуна	Временное сопротивление разрыву при растяжении, МПа (кг/мм²)	Условный предел текучести, МПа (кг/мм ²) Не менее	Относительное удлинение, %	Твердость по Бринеллю, НВ				
ЧВГ 30	300 (30)	240 (24)	3,0	130-180				
ЧВГ 35	350 (35)	260 (26)	2,0	140-190				
ЧВГ 40	400 (40)	320 (32)	1,5	170-220				
ЧВГ 45	450 (45)	380 (38)	0,8	190-250				
Химическ	Химический состав чугуна с вермикупярным графитом. Таб 8							


Химический состав чугуна с вермикулярным графитом. Таб.8

Марка		Массовая доля элементов, % (остальное железо)								
чугуна	C	Si	Mn	P	S	Cr	Cu	<u>магний</u>		
								Σ Ρ3Μ		
ЧВГ30	3,5–3,8	2,2-3,0	0,2-0,6	До 0,08	До 0,025	До 0,15	_	<u>0,015–0,028</u>		
								0,10-0,20		
ЧВГ35	3,5–3,8	2,2-2,8	0,2-0,6	До 0,08	До 0,025	До 0,15	_	0,02-0,028		
								0,10-0,20		
ЧВГ40	3,1–3,5	2,0-2,5	0,4-1,0	До 0,08	До 0,025	До 0,25	0,4-0,6	<u>0,02-0,028</u>		
								0,10-0,20		
ЧВГ45	3,1–3,5	2,0-2,5	0,8–1,2	До 0,05	До 0,025	До 0,30	0,8-1,0	0,02-0,028		
								0,10-0,20		

ЛЕГИРОВАННЫЕ ЧУГУНЫ

Механические свойства легированных чугунов (жаростойкого чугуна) таб.9. (по ГОСТ 7769-82)

Марка чугуна	Временное сопротивление, МПа, не менее		Относител ьное удлинение б , %	Твердость НВ	Марка чугуна	Временное сопротивление, МПа, не менее		Относител ьное удлинение б , %	Твердость НВ
	растяжени	изгибу				растяжени	изгибу		
	ю	$\sigma_{_{_{\mathrm{H}}}}$				Ю	$\sigma_{_{_{\mathrm{U}}}}$		
	σ					σ			
ЧХ 1	170	350	-	207 - 286	ЧХ 28	370	560	-	215 - 270
4X2	150	310	-	207 - 286	ЧХ28П	200	400	-	245 - 390
4X3	150	310	-	228 - 364	ЧХ 28Д2	390	690	-	390 - 640
ЧХ 3Т	200	400	-	440 - 590	ЧХ 32	290	490	-	245 - 340
ЧХ 9Н5	350	700	-	490 - 610	ЧС 5	150	290	-	140 - 300
ЧХ 16	350	700	-	400 - 450	ЧС 5Ш	290	ı	-	228 - 300
ЧХ 16М2	170	490	-	490 - 610	ЧС 13	100	210	-	290 - 390
ЧХ22	290	540	-	330 - 610	ЧС 15	60	170	-	290 - 390
ЧX22C	290	540	-	215 - 340	ЧС 17	40	140	-	390 - 450
ЧС15М4	60	140	-	390 - 450	ЧНХМД	290	690	-	201 - 286
ЧС17М3	60	100	-	390 - 450	ЧНХМДШ	600	1	-	170 - 320
ШХЭР	390	590	-	187 - 364	ЧНМШ	490	1	2	183 - 286
ЧЮ6С5	120	240	-	235 - 300	ЧН2Х	290	490	-	215 - 280
ЧЮ7Х2	120	170	-	240 - 286	чнзхмдш	550	ī	-	350 - 550
ЧЮ22Ш	290	390	-	241 - 364	ЧН4Х2	200	400	-	400 - 650
ЧЮ30	200	350	-	364 - 550	ЧН11Г7Ш	390	ı	4	120 - 255
ЧГ6СЗШ	490	680	-	219 - 259	ЧН15Д7	150	350	-	120 - 297
ЧГ7Х4	150	330	-	390 - 450	ЧН15ДЗШ	340	ı	4	120 - 255
ЧГ8Д3	150	330	-	176 - 285	ЧН19ХЗШ	340	-	4	120 - 255
ЧНХТ	280	430	-	201 - 286	ЧН20Д2Ш	500	-	25	120 - 220

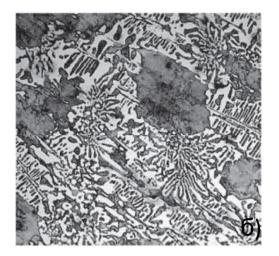
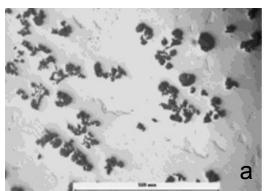



Рис.21. Микроструктура хромистого чугуна (8-10%Cr) x200: а) не модифицированный; б) модифицированный.

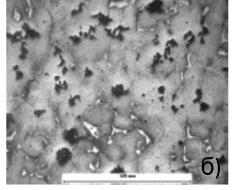
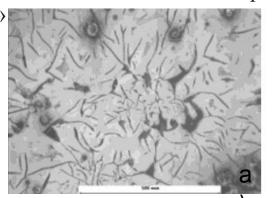
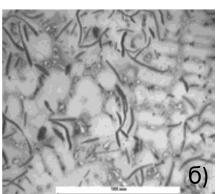




Рис.22. Структура чугуна типа «нирезист» ЧН16Д7ГХ: а - не травлено, б - травлено

Рис.23. Структура чугуна типа «нирезист» ЧН12Д2Г5ХМ: а - не травлено, б - травлено

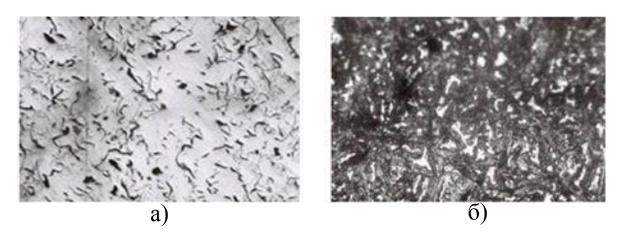


Рис.24. Микроструктура марганцовистого чугуна, содержащего 10,5%Mn; до (а) и после травления (б).х200

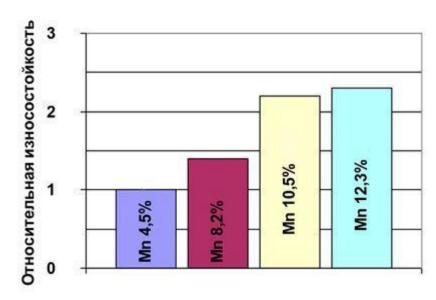


Рис.25. Зависимость относительной износостойкости марганцовистых чугунов от содержания марганца

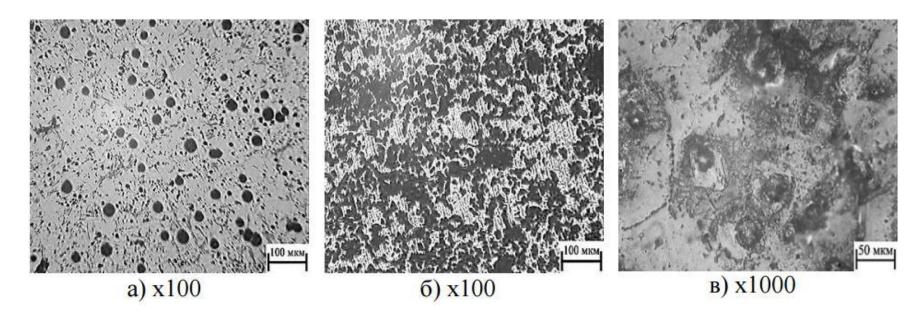


Рис.26. Микроструктура чугуна ЧЮ22Ш до (а) и после травления (б и в).

Составы высоколегированных алюминиевых чугунов. Таб. № 10

Марка	С	SI	Al	Cr	Mn	P	S	Структура
					не более			
ЖЧЮ2ХШ	3,0-3,8	2,0-3,0	1,0-2,0	0,5–1,2	0,8	0,1	0,03	$\Phi + \Pi + \Pi + L$
ЖЧЮ6С5	1,8–2,4	4,5-6,0	5,5-7,0	_	0,8	0,3	0,15	$\Phi + \Pi + \Gamma + \text{Fe}_{3}\text{AlC}_{v}$
ЖЧЮ7Х2	2,5–3,0	1,5–3,0	5,0-9,0	1,5–3,0	1,0	0,3	0,32	$\Phi + \Pi + \Gamma + Fe_3A1C_v$
ЖЧЮ22	1,6–2,5	1,0-2,0	19,0–25,0	_	0,8	0,2	0,08	$\Phi + \Gamma$
ЖЧЮ22Ш	1,6–2,5	1,0-2,0	19,0–25,0	_	0,8	0,2	0,03	$\Phi + \Gamma + Fe_3A1C_y$
ЖЧЮ30	1,0-1,2	До 0,5	29,0–31,0	_	0,7	0,04	0,08	$\Phi + A1_4C_3$

УГЛЕРОДИСТЫЕ ЛИТЕЙНЫЕ СТАЛИ

Механические свойства литейных углеродистых сталей таб.11. (по ГОСТ 977-88)

\$15,00g 000 3			Механ	ические	свойства, н	е менее	
Марка сплава	Содержание углерода, %	Но	рмализа	Закалка + + отпуск			
	Jimpo Any 70	σ _в , ΜΠа	σ _τ , Μ∏а	δ, %	а _{н'} МДж/м²	σ _в , ΜΠа	δ. %
15Л	0,12-0,20	400	200	24	0,50	_	_
25Л	0,22-0,30	450	240	19	0,40	500	22
30Л 35Л	0,27-0,35 0,32-0,40	480 500	260 280	17 15	0,35 0,35	500 550	17 16
35Л 45Л	0,42-0,50	550	320	12	0,30	600	14
55Л	0,52-0,60	600	350	10	0.25	860	15

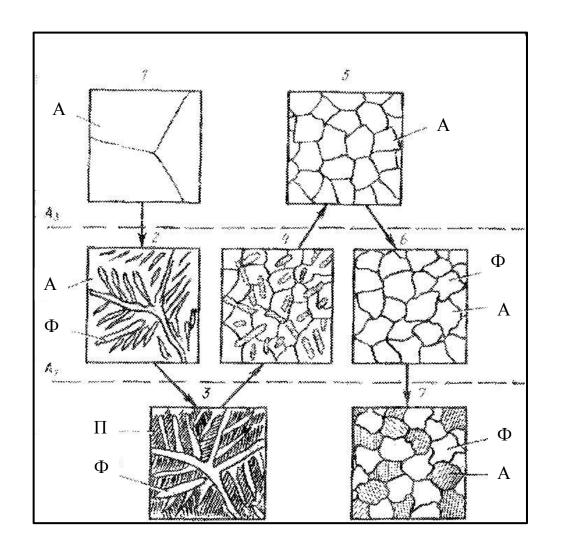


Рис.27. Схема изменения микроструктуры при фазовой перекристаллизации стали. Охлаждение в литом состояние (1-3); нагрев под нормализацию или отжиг (4,5) и последующее охлаждение (6,7).

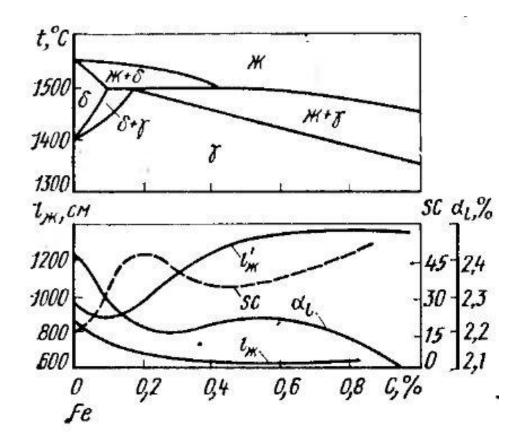


Рис.28 . Изменение практической $l_{\rm ж}$ и условно-истинной $l_{\rm ж}$ и жидкотекучести, горячеломкости SC (в условных единицах) и свободной линейной усадки ε_l (α_l) в зависимости от содержания углерода в стали (обобщение данных В. М. Сенченко, Б. Б. Гуляева, Н. И. Трубицына)

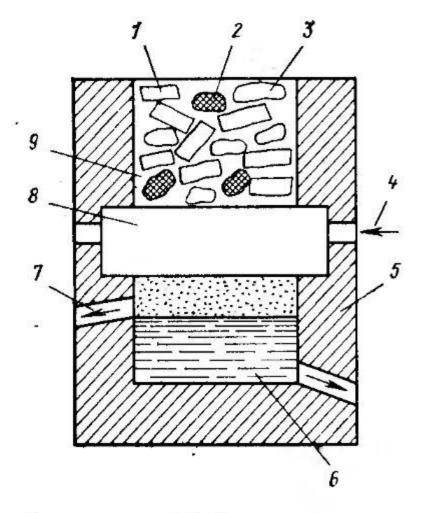
ЛЕГИРОВАННЫЕ ЛИТЕЙНЫЕ СТАЛИ

Механические свойства литейных легированных сталей таб.12. (по ГОСТ 977-75)

	Темпера	Температура, °C			Механнческие свойства, не менее				
Марка стали	закалки	отпуска	σ _в , МПа	σ _r , ΜΠа	δ. %	а _н , Дж/м²			
20ГЛ 35ГЛ 30ГСЛ	(890) (890) 860 930	630 630 630 610	550 550 600 650	300 300 350 400	18 12 14 14	0,5 0,3 0,5 0,5			
20ФЛ	(890)	630	550	300	18	0,5			
45ФЛ	860	630	700	500	12	0,35			
40ХЛ	860	630	650	500	12	0,4			
35ХМЛ	870	630	700	550	12	0,4			
30ХНМЛ	870	630	800	650	10	0,4			
30ХГСЛ	875	650	800	600	10	0,4			
23ХГС2МФЛ	990	220	1300	1100	6	0,4			
20ДХЛ	(880)	580	500	400	12	0,3			
08ГДНФЛ	(930)	620	450	350	18	0,5			
12ДХН1МФЛ	900	530	1000	750	10	0,3			

Примечание. В скобках указана температура нормализации.

Химический состав литейных легированных сталей таб.13. (по ГОСТ 977-75)


Марка стали	С	Mn	Si	Cr	Ni	Cu	v	Мо
20ГЛ 35ГЛ 30ГСЛ	0,20 0,35 0,30	1,4 1,4 1,3	0,3 0,3 0,7				_	_
20ФЛ 4 5ФЛ	0,20 0,45	0,9 0,7	0,3 0,3	_		_	0,12 0,15	
40ХЛ 35ХМЛ 30ХНМЛ	0,40 0,35 0,30	0,7 0,7 0,7	0,3 0,3 0,3	1,0 1,0 1,5	 - 1,5			0,25 0,25
35ХГСЛ 23ХГС2МФЛ	0,35 0,23	1,2 0,7	0,7 1,9	0,8		_	0,12	0,25
20ДХЛ 08ГДНФЛ 12ДХНІМФЛ	0,12 <0,1 0,12	0,6 0,8 0,4	0,3 0,3 0,3	1,0	_ 1,3 1,6	1,5 1,0 0,5	0,10 0,12	
12ДХН1МФЛ Примеча				<u> </u>		<u> </u>	<u> </u>	0,25 аждого

ВЫСОКОЛЕГИРОВАННЫЕ ЛИТЕЙНЫЕ СТАЛИ

Химический состав литейных высоколегированных сталей таб.14. (по ГОСТ 2176-77)

Марка стали	Класс по струк- туре	c	Si	Mn	-	Cr	Ni	Мо	Другие элементы
	Хром	истые кор	розионно	-стойкие	cma.	ли			1
20Х13Л	J M	0,2	0,5	0,6	1	13	- 1	-	1 -
12X18TЛ *	Φ	0,1	0,5	0,6		18		_	0,6 Ti
15X25TЛ	Ф	0,15	0,8	0,6	.	25	1.00	_	0,6 Ti
	Хромон	икелевые 1	коррозион	но-стойн	сие сп	пали			
10Х14НДЛ	J M	<0,1	0,3	0,4	1	14	1,4	1 -	1,4 Cu
09Х16Н4БЛ	М	0,09	0,4	0,4		16	4,0	(- a	0,1 Nb
X	ромоникелевые	коррозио	чно-стой	кие и ж	арост	ойкие с	тали		
12Х18Н9ТЛ	(A	<0,12	0,6	1,5	1	18	9	1 -	0,8 Ti
12Х18Н12М3ТЛ	A	<0,12	0,6	1,5		18	12	3,5	0,8 Ti
18Х25Н19СЛ	A	<0,18	1,4	1,1		25	19	<0,2	<0,4 W
				1	.				0,2 Ti
40Х24Н12СЛ	А—Ф	<0,4	1,0	0,5	1	24	12	1 -	_
	Xpo	ионикелевь	е жароп	рочные с	тали				
15Х18Н22В6М2Л	j A	0,15	0,4	0,5	1	18	22	2,5	6 W
	1		1						0,01 B
08Х17Н34В5Т3Ю2Л	A	<0,08	0,3	0,5		17	34	_	5 W; 3 T
	i	l	l	ł	1		i	1	2 Al; 0,05 B
	Хром	юкремнист	пая изно	остойка	я ста	ль			
40Х9С2Л	I M	0,4	2,5	0,5	- 1	9	1 -	1 -	ı –
	Высо	комаргані	цовая изн	осостойн	can cr	паль			
. 10010 7								2000	1 € United Sec
110Г13Л	l A	1,1	0,7	13		<1,0	<1,0	1 -	_

Теоретические основы плавки литейных сплавов

Рис. 29 Обобщенная схема плавильного агрегата:

1 — твердый металл; 2 — твердый углерод; 3 — твердые флюсы; 4 — подаваемый газ; 5 — футеровка; 6 — жидкий металл; 7 — жидкий шлак; 8 — плавильное пространство; 9 — газовая фаза печи

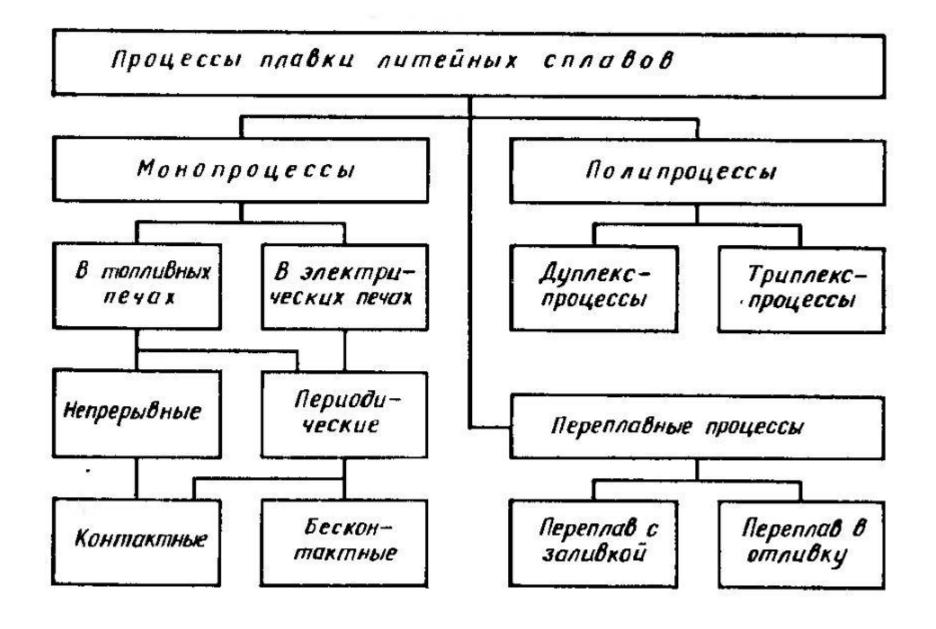


Рис. 30. Общая схема классификации процессов плавки литейных сплавов

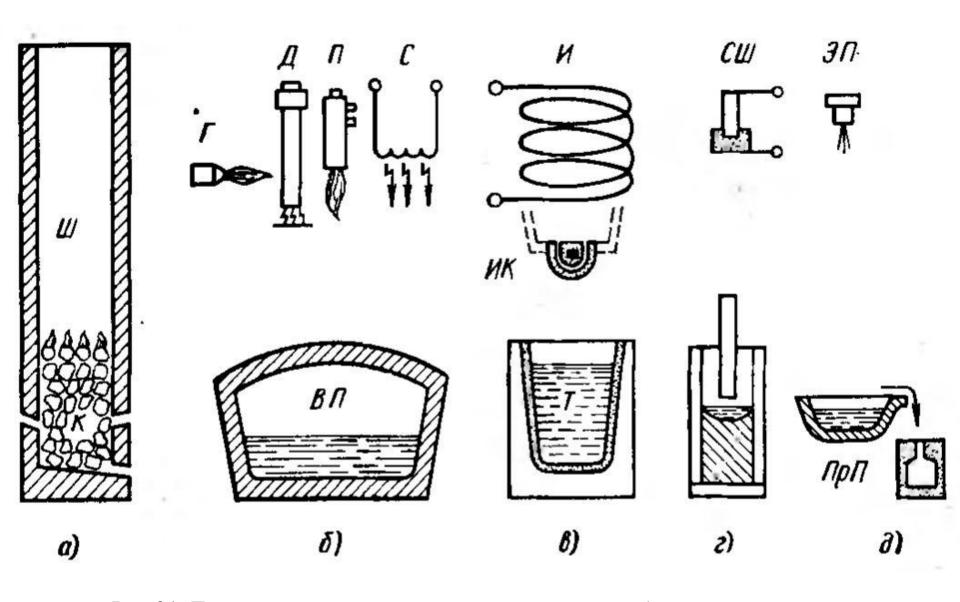


Рис.31. Технологические схемы основных типов рабочего пространства плавильных печей и источников генерации тепла

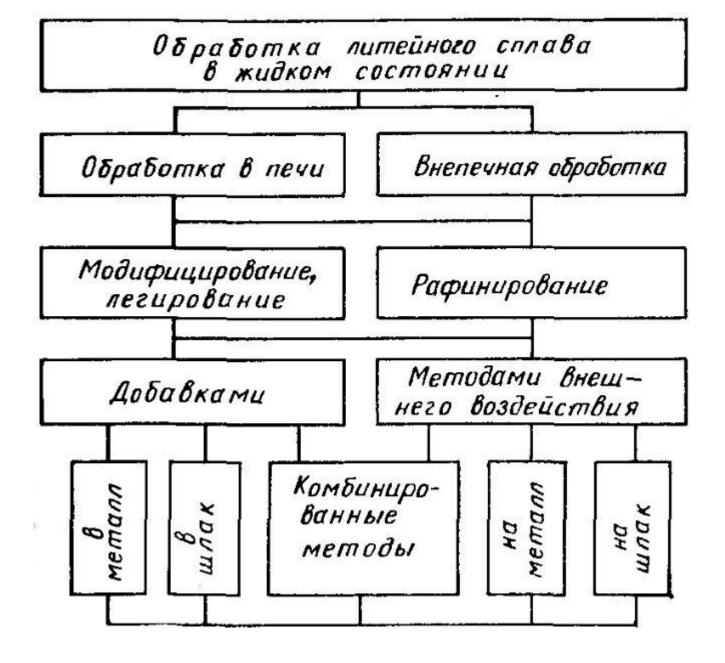


Рис.32. Классификация процессов обработки литейных сплавов в жидком состоянии

вводитыг добавки	Газы О, N, HГ		-	Твердые Ч, С, Л, Ф	•	Жидк Ф, Ш	19 19 15
Устройства для ввода	Д Q	<i>ПГВ</i>	DICH	MB ■	<i>K</i> ∥	3K	N Di
Место ввода или воздействия		ВЖ	OI		i Grand		φ
Специальные устройства	yφ	A, BK		y /		93	3y

Рис.33. Элементы синтеза методов литейных сплавов в жидком состоянии

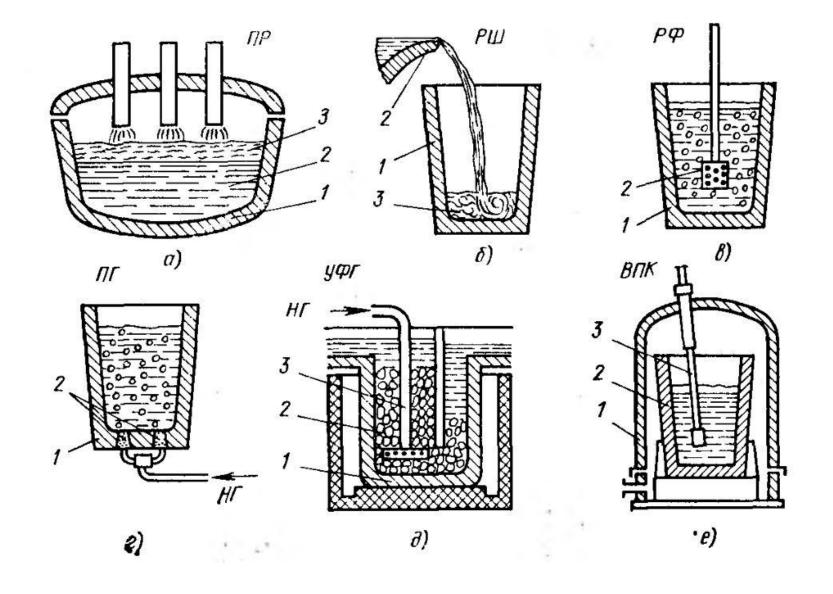


Рис.34. Методы рафинирования литейных сплавов

Вторичные черные металлы, используемые в качестве металлической шихты в литейных цехах таб.15. (ГОСТ 2787-86)

	Desa	Номер	Общее	Плавильный
Категория	Вид	вида	обозначение	агрегат
	Стальные .	лом и		
	отході	ы		
А, Б	Стальной лом и отходы №1	1	1А, 1Б	ДСП, ИСТ, В
А, Б	Стальной лом и отходы №2	2	2А, 2Б	ДСП
А, Б	Шихтовые слитки	4	4A, 4B	ДСП
А, Б	Брикеты из стальной струж- ки	7	7A, 7Б	дсп, в
А, Б	Пакеты №1	8	8A, 8B	ДСП
А, Б	Пакеты №2	9	9А, 9Б	ДСП
A	Пакеты №3	10	10A	ДСП
A	Стальная стружка №1	13	13A	ДСП, ИСТ, ИЧТ
	Чугунные .	лом и		
	отході	ы		
А, Б	Чугунные лом и отходы №1	16	16А, 16Б	ИЧТ, В
Α	Чугунные лом и отходы №2	17	17A	ИЧТ, В
A	Брикеты из чугунной струж- ки	20	20A	В
А, Б	Чугунная стружка	21	21А, 21Б	ДСП, ИЧТ

Условные обозначения плавильных агрегатов: ДСП – дуговая сталеплавильная печь, ИСТ

индукционная сталеплавильная тигельная печь высокой частоты; В – вагранка; ИЧТ – ин- дукционная чугуноплавильная тигельная печь промышленной частоты

ПЛАВКА ЧУГУНА В КОКСОВЫХ ВАГРАНКАХ

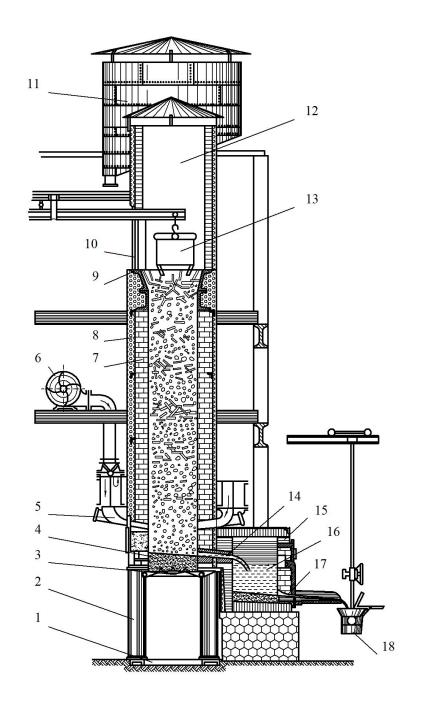


Рис. 35. Схема устройства вагранки:

1 – фундамент;

2 -колонны;

3 – подовая плита;

4 -под (лещадь);

5 – фурмы;

6 – вентилятор;

7 – футеровка;

8 - кожух;

9 – плиты колошника;

10 – загрузочное окно;

11 – искрогаситель;

12 – шахта;

13 – бадья;

14 – чугунная летка;

15 – копильник;

16 – жидкий чугун;

17 – выпускная летка копильника;

18 – ковш раздаточный

ПЛАВКА В ЭЛЕКТРИЧЕСКИХ ДУГОВЫХ ПЕЧАХ

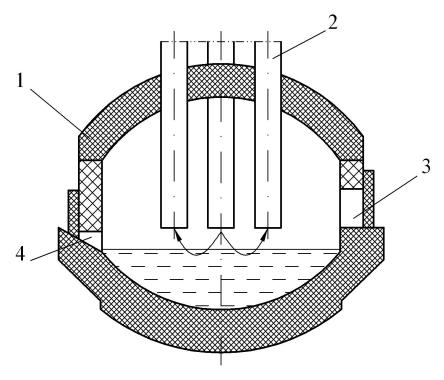


Рис. 36. Схема трехфазной ДСП: 1 — свод; 2 — электроды; 3 — рабочее окно; 4 — выпускное окно

Характеристики дуговых печей таб. 16.

Параметры		Tu	п печи	
	ДСП-6Н2	ДСП-12Н2	6ДСП-25	ДСП-50Н2
Номинальная емкость, т	6	12	25	50
Мощность печного трансформатора,	4000	9000	15000	25000
кВ.А			2.5	2.5
Высокое напряжение печного трансформатора, кВ	6 или 1 0	6 или 10	35	35
Низкое напряжение, В	116,5	115	126	131
Максимальный линейный ток, А	9950	16370	23550	34600
Диаметр кожуха (на уровне откосов),	3350	4260	4700	5800
MM				
Диаметр графитированного элек-	300	350	400	500
трода, мм				
Ход электрода, мм	2000	2250	2500	3500
Скорость перемещения электродов	5,0	5,0	3,5	3,5
вверх, м/мин				
Габаритные размеры (длина, ширина,	7460×7620	8560×9460	9865×11000	15545×10375
высота), мм	×7425	×11200	×12850	×17775
Масса металлоконструкций, т	50	90	168	276

Огнеупорные материалы для футеровки печей. Таб. 17

Элементы печи	Кислая печь	Основная печь
Свод	Динасовый фасонный или нормальный кир	лич
Арки	То же	
Стены	Динасовый фасонный или нормальный	Магнезитовый фасонный или нормальный
	кирпич	кирпич
Столбики	То же	То же
Под	Кладка – динасовый кирпич. Подина	Кладка – магнезитовый кирпич. Подина –
	– набивная из кварцевого песка на жидком	набивная из магнезитового порошка на
	стекле	жидком стекле
Тепло-изоляция	Шамот и асбест или диатомит	

Составы конечных шлаков. Таб.18

Тип шлака	Массовая доля составляющих, %								
	CaO + CaF2	CaO + CaF2 SiO2 MgO A2O3 FeO MnO Cr2O3 CaC2 CaS						CaS	
Карбидный	60–70	10–15	7–10	2–3	0,5	0,5	0,5	1,5–3	2
Белый	60–65	15–20	7–10	2–3	0,5	0,5	0,5	0,5	1

ПЛАВКА В ИНДУКЦИОННЫХ ПЕЧАХ

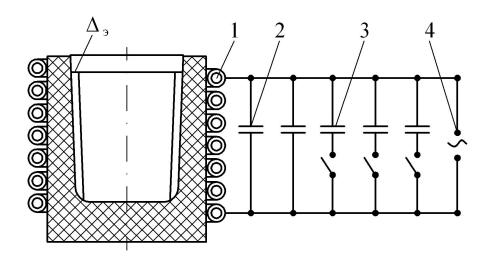


Рис. 37. Принципиальная схема индукционной тигельной печи: 1 — индуктор; 2, 3 — конденсаторы; 4 — источник питания

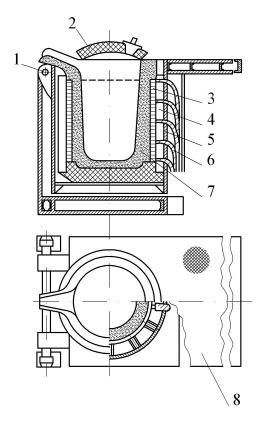


Рис. 38. Общий вид индукционной тигельной печи промышленной частоты

Технические характеристики индукционных печей для получения чугуна. Таб.19

Тип пла-	Вмести-	Мощность печи по	Частота	Расчетная скорость плав-
вильной	мость печи, т	трансформатору, кВт	тока, Гц	ки (перегрев на 100 °C),
печи				т/ч
ИТЧ-1	1,0	400	50	0,6
ИТЧ-2,5	2,5	1000	50	1,7
ИТЧ-6,0	6,0	1600	50	2,7
ИТЧ-10	10,0	2500	50	2,4
ИТЧ-21	21,0	5600	50	11,3
ИГЧ-31	31,0	7100	50	14,2
ИТЧ-60	60,0	20000	50	33,6

Технические характеристики индукционных канальных миксеров промышленной частоты для выдержки чугуна. Таб. 20

Тип канального	Вмести -	Мощность по транс -	Расчетная скорость пере-
миксера	мость, т	форматору, кВт	грева на 100 К, т/ч
ИЧКМ –2,5	2,5	_	7
ИЧКМ –4	4	_	14
ИЧКМ –6	6	_	14
ИЧКМ –10	10	500 / 1000	29 / 58
ИЧКМ –16	16	500 / 1000	29 / 58
ИЧКМ –25	25	1000 / 2000	55 / 110
ИЧКМ –40	40	1000 / 2000	55 / 110
ИЧКМ –60	60	2000 / 4000	115 / 230
ИЧКМ –100	100	2000 / 4000	115 / 230

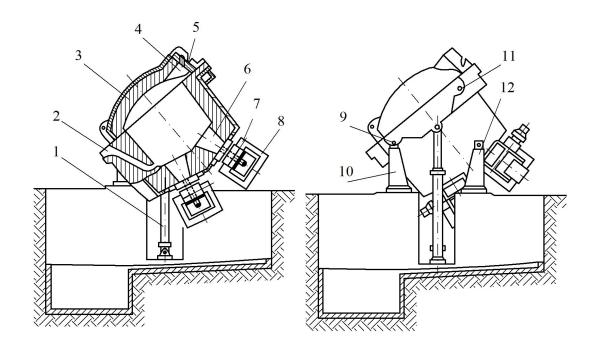


Рис. 39. Индукционный канальный миксер шахтного типа: 1 — гидроцилидры; 2 — сифон- ный желоб; 3 — съемная крышка; 4 — окно; 5 — крышка окна; 6 — полость канала; 7 — индук- тор; 8 — магнитопровод; 9, 11 — отверстия под ось для поворота печи; 10 — передняя стойка печи; 12 - 3адняя стойка

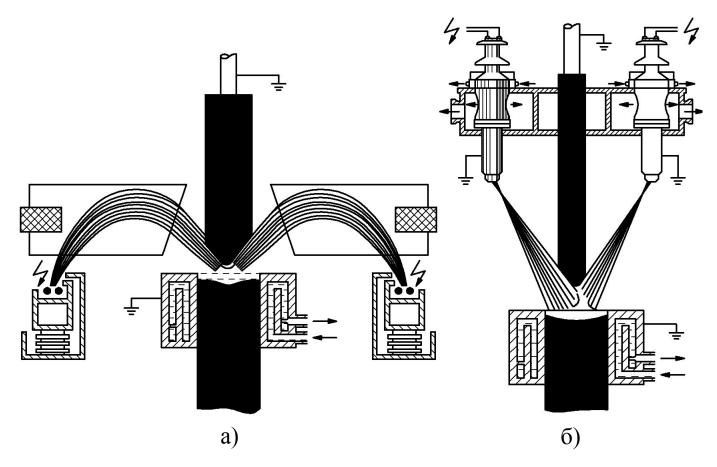


Рис. 40. Принципиальная схема плавления электронным лучом: a — получение плоского луча; δ — получение трубчатого луча