Состав тонких покрытий

Химические элементы: □Металлы – Au, Ag, Rh, Ni, Cr

□Полупроводники – Si, Ge

□Неметаллы – С (DLC diamond like carbon)

Состав тонких покрытий *TiN* Химические соединения:

□Нитриды □Карбиды

оксиды

(AI,Ti)N

(Cr,Ti)N

Нанослойные покрытия

Ti/Al (a) – толщина слоев 500 нм (б) – толщина слоев 25 нм

Объемные нс-покрытия

Amorphous phases (*a*-) Hard nanocrystalline phases (nc-) (ceramic, metal, carbon, etc.) (nitrides, carbides, borides, oxides, silicides, etc.)

Объемные нс- покрытия состоят из несмешиваемых фаз (или фаз с ограниченной растворимостью) в виде нанокристаллов и аморфной фазы (*a*-), окружающей эти нанокристаллы.

В качестве <u>нс- фаз</u> выбирают соединения:

- <u>Нитриды</u> TiN, CrN, AlN, BN, ZrN, …
- <u>Карбиды</u> TiC, VC, WC, ZrC, ...
- <u>Бориды</u> TiB₂, CrB₂, VB₂, WB, ...
- <u>Силициды</u> $TiSi_2$, $CrSi_2$, $ZrSi_2$, ...
- <u>Оксиды</u> Al_2O_3 , $\tilde{T}iO_2$, $\tilde{S}iO_2$, ZrO_2 ...

В качестве аморфной матрицы - соединения Si-N, Al-N, B-N, C-C, B-C

Синтез определяется возможностью одновременного со-осаждения нанокристаллических и аморфных фаз, например :

Ti-B-C-N (Hc-TiC, TiB, / a-BN) (Knotec, 1990)

- Ti-B-N (Hc-TiN, TiB/ a-BN) (Andrievski, Mitterer, 1990)
- **Ti-Si-N** (Hc-TiN, TiSi₂/a-Si₃N₄) (Veprek et al., 1995)
- Ti-C-B (Hc-TiB, ,TiC/ a-B-C) (Levashov, Moore et. al., 1997)
- **Ti-Si-B-N** (Hc-TiB₂, TiN, TiSi₂/a-Si₃N₄) (Levashov, Shtansky, et. al., 1999)
- WC/DLC (Hc-WC/ a-C) (Voevodin et al., 1999)
- Ti-Al-B-N (Hc-TiB₂, TiAlN/ *a*-BN, AlN) (Levashov, Shtansky, et. al., 2001)
- W-Si-N (Hc-W₂N/a-Si₃N₄) (Musil, Cavaleiro, Louro, 2002)
- **TiC/DLC** (**Hc-TiC**/*a*-**C**) (*Stuber et al., 2002*)
- Ti-Al-Si-N (Hc-TiAlN/ a-Si₃N₄) (Park, Choi, 2003)
- **Cr-Si-N** (Hc- CrN/ a-Si₃ \check{N}_{A}) (Martinez et al., 2004)

Толщина тонких покрытий

T_{sub}=150°C

U_{bias}=0 ξ=0.14

• Шар-шлиф (при h>1,5÷2мкм)

• Шлифы (использование ионных пучков)

• Изломы

Использование техники сфокусированного ионного травления (FIB)

Поверхность покрытия TiN

Участок поверхности объекта, протравленного сфокусированным ионным пучком

Микроструктура покрытий

• Растровая электронная микроскопия (РЭМ)

Механизмы локализованной деформации многокомпонентных нс- тонких пленок

Гомогенная деформация

Негомогенная деформация с образованием ступенек сдвига

ПЭМ

Пример нс- пленки в системе Ti-Al-B-N

ПЭМ

Дефекты структуры наноструктурных тонких покрытий

Двойные стыки внутри кристалла с-BN размером 2 нм

Дислокации несоответствия на границе и краевая дислокация внутри зерен

$[110]_{Si} //[001]_{fcc} //[110]_{fcc}$

ПЭМ

Механизмы зарождения: <u>Странского и Крастанова</u> <u>(слой + островки роста)</u>

- последний слой имеет столбчатую структуру.

-затем формируется слой с кристаллитами TiN в аморфной матрице (стрелками показаны отдельные нанокристаллы)

-первоначально растут аморфные слои (1), (2) и (3)

Поперечное сечение указывает на слоистую структуру пленки:

Спектроскопия поверхности

- Микрорентгеноспектральный анализ (h_{ин}=1÷3 мкм);
- Оже-спектроскопия, масс-спектроскопия вторичных ионов (h_{ин} = несколько нм);
- Фотоэлектронная спектроскопия (h_{ин} = до 0,5 нм)

Фотоэлектронная спектроскопия

Зондовая сканирующая микроскопия

Разрешение 0,5-1 нм

Зондовая сканирующая микроскопия

Профилометрия поверхности

Наноидентирование

определение твердости, модуля упругости и упругого восстановления

Таблица 2. Свойства материалов, рассчитанные по данным наноиндетирования.

Материал	Н, ГПа	Е, ГПа	R, %
Медь	2.1	121	14
Титан (ОТ4-1)	4,1	130	19
Многослойная пленка Ті/α-С:Н	8,0	128	34
Аморфная лента Zr-Cu-Ti-Ni	11,5	117	42
Кремний (100)	11,8	174	62
Тонкая пленка Ti-Si-N	28,4	295	62

Зависимость модуля упругости нс- пленок Ti-C-Ca-P-O-N <u>разной толщины</u> на подложке из плавленого кварца от глубины вдавливания индентора

Зависимости твердости (H), модуля упругости (E) и упругого восстановления (R) <u>нс-покрытия Ti-C-Ca-P-O-N</u> (**h**= 1,8 мкм) на подложках плавленого кварца и сапфира <u>от глубины погружения индентора</u>

Плавленый кварц

сапфир

Нанослойные покрытия

Ti/Al (a) – толщина слоев 500 нм (б) – толщина слоев 25 нм

а

б

Как влияет толщина отдельного слоя на механические свойства всего покрытия?

Нанослойные покрытия Ti/Al с различной толщиной слоя на подложках из плавленого кварца. h = 3 мкм

Зависимость твердости от толщины слоя (закон Холла-Петча)

Измерение адгезии покрытий. Скратч- тестирование

Прибор/ назначение	Цель измерения	Результаты теста
Revetest (склерометр) Царапанье алмазным индентором покрытий при нарастающей нагрузке до разрушения (нагрузка 1-200 H, глубина царапины до 1мм)	Определение адгезионной прочности и стойкости к царапанью Определение механизма разрушения покрытий	Критическая нагрузка Зависимость от нагрузки: - внешнего вида царапины - акустической эмиссии - коэффициента трения - глубины царапины

Определение критической нагрузки

Увеличение нагрузки =

Исследование царапины для определения критической нагрузки L_с

Скратч-тестирование нанослойных покрытий Ti/Al с толщиной слоя менее 50 нм на металлических и оксидных подложках

Измерение коэффициента трения и приведенного износа

Прибор/ назначение	Цель измерения	Результаты теста
Tribometer (машина трения), испытание на износ Нагрузка 1-10 Н	Оценка износостойкости материалов и покрытий по методу «стержень – диск»; Определение механизма износа Подбор пар трения	Для выбранной пары трения: - коэффициент трения - скорость износа образца - скорость износа контртела (ASTM G99-959 и DIN50324)

Зависимость коэффициента трения от величины пробега для нанослойных покрытий Ti/Al на подложках из плавленого кварца, сапфира, Grade 4, нс- титана

Определение износа

Другие функциональные свойства нс- покрытий

Режущие свойства инструмента с нс- покрытиями

<u>Инструмент:</u> 8-мм концевые твёрдосплавные фрезы (SGS Tool Company, США) <u>Обрабатываемый материал:</u> сталь X12BФ (52-53 HRC)

<u>Станок:</u> прецизионный сверлильно-фрезерный станок VF-1 (HAAS, США)

Условия обработки: скорость вращения

1900 об/мин, скорость подачи 150 мм/мин,

припуск 0.2 мм, без СОЖ

Стойкость инструмента с нс- покрытиями (Ti,Cr)-Al-(C,N) в 2.5 – 4,0 раза выше, чем у базовых покрытий

Исследования <u>in vivo</u> с использованием

Замещение дефекта кости черепа титановым имплантатом

Полная остеоинтеграция: клетки остеобластов растут по всей поверхности покрытия встраиваясь в морфологию костных тканей

Интенсивная пластическая деформация

- Кручение под квазигидростатическим давлением;
- Равноканальное угловое прессование (РКУП);
- Всесторонняя ковка

Кручение под квазигидростатическим давлением

Равноканальное Угловое прессование

Производство медицинских имплантатов из объемных наноструктурных материалов

Повышение прочности нелегированного титана позволит применять его в сильно-нагруженных конструкциях медицинских имплантатов

Наноструктурный титан

Сверхпластичность

Проявление эффекта сверхпластичности титана в объемном наноструктурном состоянии

Остаточная деформация – 900-1000 %