LIPID METABOLISM Part 2

Phospholipid

Self-organizatio n of phospholipids

Bilayer sheet

Phosphatidyl inositol calcium system

Phospholipase A₂ of bee venom

The synthesis of acetylcholine Choline acetyl-transfera CH₃ SC $O-CH_2-CH_2-N(CH_3)_3 + HSKOA$ acetylcholine

Phospholipid synthesis

Violations of complex lipid metabolism

galactocerebroside

glucocerebroside

ceramide

sphingosine

sphingomieline

- 1 Gaucher disease (glucocerebrosidase deficiency)
- 2 Krabbe disease (galactocerebrosidase deficiency)
- 3 Farber disease (ceramidase deficiency)
- 4 Niemann-Pick disease (sphingomielinidase deficiency)

1982 Nobel Prize in Physiology or Medicine

for their discoveries concerning prostaglandins and related biologically active substances

Sune K. Bergström

Bengt I. Samuelsson

Sir John R. Vane

Ulf von Euler - 1970 Nobel Prize in Medicine and Physiology (identified prostaglandin) Elias J. Corey - 1990 Nobel Prize in Chemistry (chemical synthesis of prostaglandin)

Cholesterol

Cholesterol ester

Fatty acid residue

Classification of steroids

Cholesterol synthesis Acetyl-CoA acetyltrans ferase 2 CH₃-CO-S-CoA

\rightarrow CH₃-CO-CH₂-CO-S-CoA + HS-CoA. Acetoacetyl-CoA

Cholesterol ester metabolism

Acylcholesterol + $H_2O \rightarrow$ Fatty acid + Cholesterol

Stationary state

(Cholesterol _{endog} + Cholesterol _{exog}) = = (Cholesterol _{excr} + Bile acids _{excr})

Joseph L. Goldstein

Hyperlipidemia classification

DISEASE	LIPID PROFILE	ETIOLOGY	
Type I Familial hyper- chylomicronemia	†Chylomicrons	Deficiency in LPL or apoCII	
Type IIA Familial hyper- cholesterolemia	↑LDL	Decreased or no functional LDL receptor expression	*
Type IIB Familial combined hyperlipidemia	↑ LDL ↑ VLDL	Overproduction of VLDL by liver	*
Type III Familial dysbeta- lipoproteinemia	↑ IDL	Abnormal apoE	*
Type IV Familial hyper- triglyceridemia	↑ VLDL	Overproduction and/or impaired catabolism of VLDL	*
Type V Familial mixed hyper- triglyceridemia	↑Chylomicrons ↑VLDL	Increased production or decreased clearance of VLDL & chylomicrons.	

Atherosclerosis

Atherosclerotic plaque

Atherosclerotic plaque is surgically scraped from artery

Cholelithiasis

Xanthomatosis

