Polygels and Tempoxy-LO in NaClO based formulations

De te speets D & Islan

Agenda

- Project Objectives
- Polygel CA and CK
- Technical Data for Polygels
- Tempoxy-LO
- Technical Data for Tempoxy-LO
- Conclusions
- Appendix 1: NaClO formulations with Polygel
- Appendix 2: Raw Material

Project Objective

- Develop NaClO based formulations with
 - good rheological behaviour,
 - good on-storage stability for viscosity and NaClO content,

Conclusions

- Polygel CA and CK deliver a good rheological behaviour and stability profile for NaClO based formulations
- Tempoxy-LO improves even further the on-storage rheological stability.

Polygel CA and Polygel CK

- Polygel CA and Polygel CK are powdered cross-linked Polyacrylates.
- They are capable to impart visco-elastic behaviours.

Thickening Mechanism

"The electrostatic repulsion between adjacent carboxylic groups is the main factor influencing the polymer swelling degree and then the thickening capability of carbomer's dispersion."

Acidic Medium Alkaline Medium OXYGEN OXYGEN

 $n^{\circ}2$ - ed. 1/2

6

Neutralizers

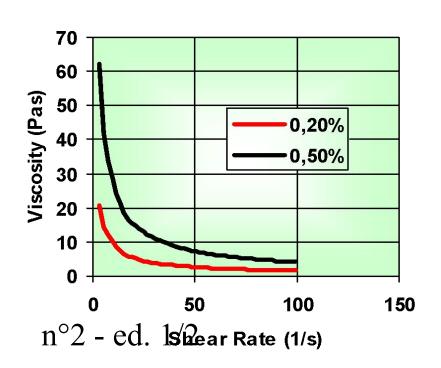
 Polygel CK shows better result in term of viscosity/stability using KOH solution to adjust the pH.

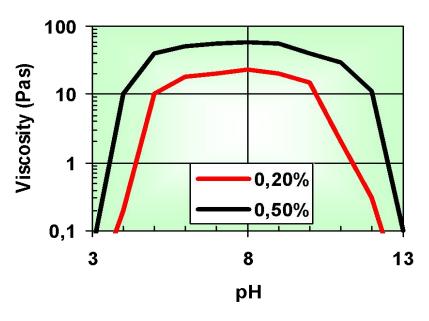
 Potassium ion has a bigger diameter compared to Sodium, maximizing the polymer swelling mechanism.

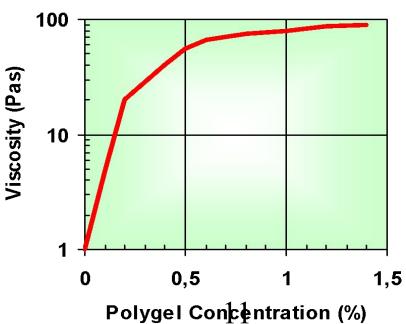
Polygel Properties

- Polygel CA and CK deliver:
 - Shear thinning rheology
 - Improvement of easiness in application
 - Spray-ability
 - Plastic behaviour
 - Yield Value
 - Reduction in mist pattern
 - Vertical cleaning
 - Splashing reduction

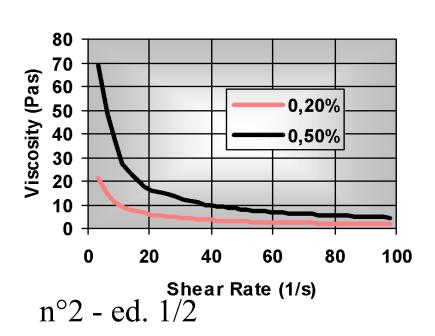
Polygel and Bleach

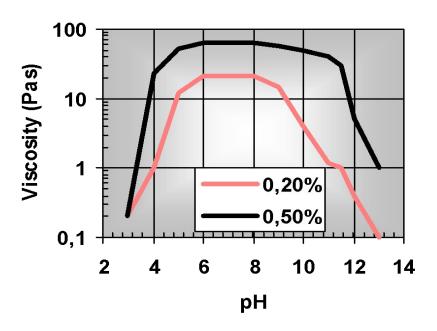

- Polygel CA and Polygel CK show excellent stability in bleach formulation.
- Depending from different formulations, they show good overall stability with an AvCl₂ between 1% and 4%.
- A viscosity improvement is evident within the first 10 days of storage.
- they are stable for 10-12 weeks at 40°C.

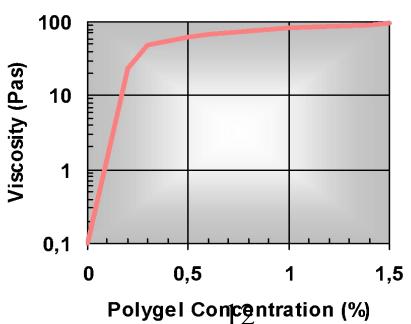

Polygel and Bleach

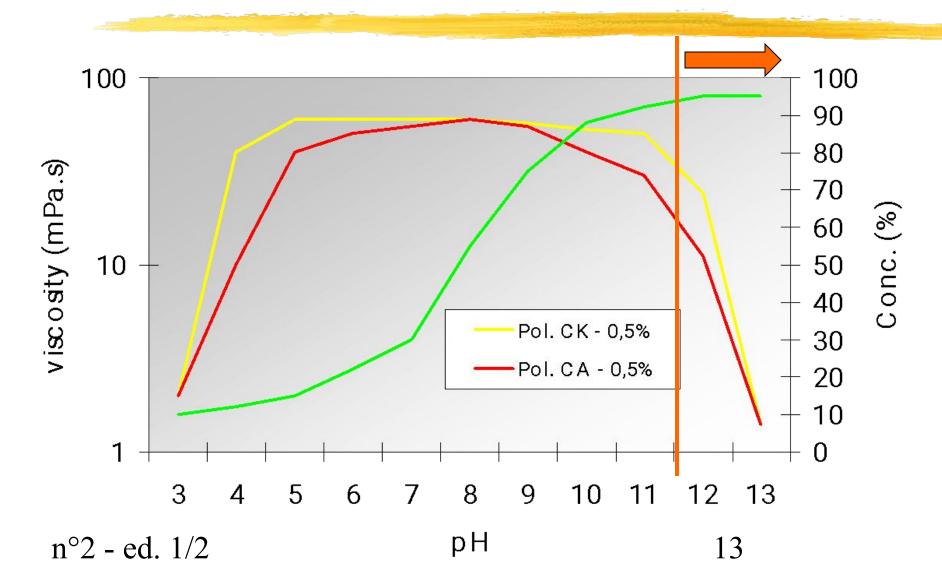

 Polygel CA and CK start to thicken close to pH 4 up to a plateau. Viscosity will decrease from pH 11 till 14.

 Comparing Polygel rheological profile vs. bleach overall stability, there is an overlap area between pH 12 and 13.


Polygel CA






Polygel CK

pH Importance in the NaClO Formulations

Stability highlights- Polygel CA

Raw materials	Percentag e w/w
Polygel CA	1
NaClO	1
КОН	Up to 12.5
Dem Water	Up to 100

Brookfield viscosity, 20 rpm, 25°C (cps)	
Initial	3500
After 1 month at room T	3550
After 1 month at 40°C	3425
AvCI ₂	
Initial	1
After 1 month at room T	0.97
After 1 month at 40°C	0.92

Stability highlights – Polygel CK

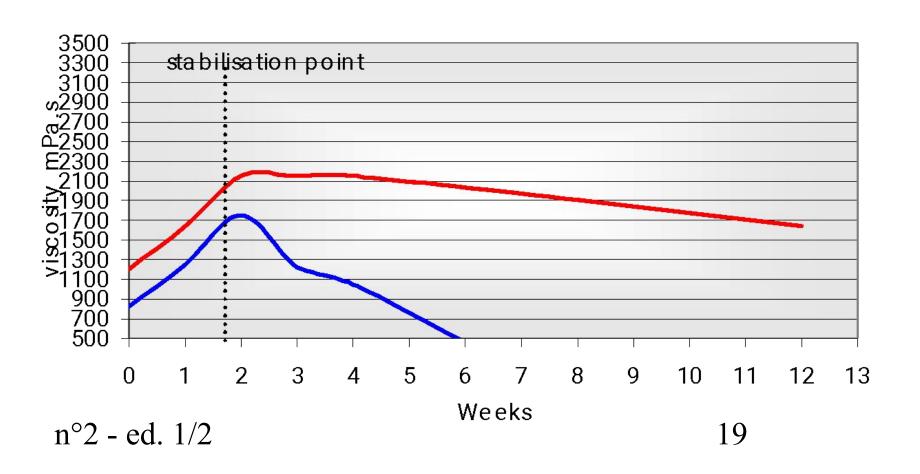
Raw materials	Percentage w/w
Polygel CK	1.5
NaClO	1.9
NaOH	Up to 12.5
Dem Water	Up to 100

Brookfield viscosity, 20 rpm, 25°C (cps)	
Initia I	1600
After 1 month at room T	1350
After 1 month at 40°C	1500
AvCl ₂	
Initia I	1.9
After 1 month at room T	1.7
After 1 month at 40°C	1.3

Polygel CK: KOH vs. NaOH

	Ref	1	2
	% w/w	% w/w	% w/w
Polygel C K	÷	2.0	2.0
NaOCI (as active chlorine)	4.9	4.9	5.0
Ethyl he xyl sulpha te	1.0	1.0	1.0
NaOH	to pH 12.5	to pH 12.5	÷
КОН	÷	÷	to pH 12.5
H ₂ O	Up to 100	Up to 100	Up to 100
Brookfield viscosity, 20 rpm, 25°C (cps)			
Initia I	÷	1200	2600
After 1 month at 40°C	÷	1000	2300
AvC I ₂			
Initia I	4.9	4.9	5.0
After 1 month at 40°C	3,3	3,4	3,4

Tempoxy-LO: Radical Scavenger


- 3V Sigma has developed Tempoxy-LO to increase Polygel performances in bleaches.
 - Tempoxy-LO is a patented additive, capable to improve Polygel stability.
 - Working sinergically with Polygel, it stabilises viscosity at high AvCl₂ content

Tempoxy-LO Stabilization Data

	with Tempoxy- LO	without Tempoxy LO
POLYGEL CK tempoxy LO NaOCI (AvCI2) KOH (50%)	2,0 0,3 5% a pH 13	2,0 ÷ 5% a pH 13
Dem Water	to 100%	to 100%

T: 40°C						
formula:	with	Tempoxy	y LO	withou	it Tempo	xy-LO
weeks	viscosity	рН	% CI	viscosity	рН	% CI
0	1200	13	5	820	13	5
1	1640	13	3,8	1250	13	4,5
2	2150	13	3,58	1750	13	4,36
3	2150	13	3,23	1225	13	3,97
4	2150	13	3	1050	13	3,68
8	1900	13	2,24	0	13	2,6
12	1640	13	1,87	0	13	2

Viscosity Profile

Conclusions

- In NaClO based formulations Polygel CA and Polygel CK deliver:
 - Good storage stability
 - Yield Value
 - Cling effect on vertical surfaces
 - Cup retention
- Tempoxy-LO enhances even further the rheological stability on storage for such thickened formulations

Appendix 1 Market Status & Formulations

- NaClO is used in the following applications:
 - Hard Surface Cleaners
 - Drain openers
 - Toilet bowl cleaners
 - Kitchen triggers
 - Automatic Dish Washing Liquid and Gels

Appendix 1 Formulation key drivers:

 These compositions have increased viscosity to enhance residence time on non-horizontal surfaces.

- pH: 12.5
- Oxidizing system: NaClO (usually AvCl₂<4.5%);
- Thickening system: Carbomer (Polygel CA, CK);
- Target viscosity: 300 700 mPa.s (Brookfield RV, 25°
 C).

Appendix 1 Cream Cleanser with Bleach

Polygel CA	1%
Laueth-3 Sulphate (27%) ¹	4%
Fatty Alcohol EO/PO terminally blocked ²	1%
Sodium Phosphonate ³	0.5%
CaCO ₃	20%
NaOH (50%)	Up to pH
AvCl ₂	1%
Dem Water n = 2500-3200 mPa.s pH: 12-12.5	Up to 100%

Appendix 1 Cream Cleanser with Bleach

Polygel CK	0.8%
Laueth-3 Sulphate (27%) ¹	4%
Lauryl dimethylamine oxide (30%) ⁴	1%
Phytic acid	0.2%
CaCO ₃	20%
NaOH (50%)	Up to pH
AvCl ₂	1%
Dem Water	Up to 100%

 $\eta = 2500-3500 \text{ mPa.s}$ pH: 12-12.5

Appendix 1 HSC: Bleach Gel

Polygel CA	1%
Laureth-3 Sulphate ¹	4%
KOH (50%)	Up to pH
AvCl ₂	1%
Dem Water	Up to 100%

 $\eta = 3000-3500 \text{ mPa.s}$ pH: 12.5

Appendix 1 HSC: Bleach Gel

Polygel CK	1.4%
Ethyl Hexyl Sulphate (40%) ⁵	1%
Fatty Alcohol EO/PO terminally blocked ²	1%
KOH (50%)	Up to pH
AvCl ₂	3%
Dem Water	Up to 100%

 $\eta = 1200-2000 \text{ mPa.s}$ pH: 12-12.5

Appendix 1 Toilet Bowl: Bleach Gel

Polygel CK	1.5%
Alkyl (C12-C18) dimethylamine oxide(30%) ⁷	3%
KOH (50%)	Up to pH
AvCl ₂	4.5%
Dem Water	Up to 100%

 $\eta = 700-1500 \text{ mPa.s}$ pH: 12.5

Appendix 1 HSC: Bleach Gel

Polygel CK	1.5%
Lauryc Acid ⁸	1%
Alkyl (C12-C18) dimethylamine oxide(30%) ⁷	3%
KOH (50%)	Up to pH
AvCl ₂	3%
Dem Water	Up to 100%

 $\eta = 5000-7000 \text{ mPa.s}$ pH: 12-12.5

Appendix 1 Automatic Dish Washing Gel

Polygel CA	0.8%
Sodium Silicate (R=2,4)	20%
Sodium Tripolyphosphate	15%
Sodium n-decyldiphenyloxide disulphonate (45%) ⁶	3%
NaCO ₃	5%
KOH (50%)	Up to pH
AvCl ₂	1%
Dem Water	Up to 100%

 $\eta = 3500-4500 \text{ mPa.s}$

pH: 12.5-13

Appendix 1 Automatic Dish Washing Gel

Polygel CK	0.8%
Sodium Silicate (R=2,4)	20%
Sodium Tripolyphosphate	15%
Sodium n-decyldiphenyloxide disulphonate (45%) ⁶	4%
NaCO ₃	5%
KOH (50%)	Up to pH
AvCl ₂	1%
Dem Water	Up to 100%

 $\eta = 5000-6000 \text{ mPa.s}$

pH: 12.5-13

Appendix 2 Raw Materials

- 1: Empicol ESB 3M (from Huntsman)
- 2: Plurafac LF 403 (from BASF)
- 3: Sequion CLR (from Bozzetto)
- 4: Empigen OB (from Huntsman)
- 5: Empicol 0585/A (from Huntsman)
- 6: Dowfax 3B2 (from Dow)
- 7: Aromox BW270 (from Akzo Nobel)