Mark – scheme for RADIOACTIVITY quiz:

- 1. Delta.
- 2. True
- 3. Gamma
- 4. Alpha particles
- **5. Beta decay** (Radioactive decay that emits energetic electrons is <u>called</u> <u>beta decay</u>. Beta decay comes in two varieties. β decay involves normal, negatively-charged electrons, while β + decay involves positively-charged electrons or positrons. The energetic electrons or positrons are called beta particles in this context.)
- 6. Alpha decay

Q2: Complete the following nuclear equations (the question marks)

a.
$$^{42}_{19}{
m K} \rightarrow ^{0}_{-1}{
m e}^{-} + ?$$

b.
$$^{239}_{94} Pu \rightarrow ^{4}_{2} He^{2} + +?$$

c.
$${}_{4}^{9}\mathrm{Be} \rightarrow {}_{4}^{9}\mathrm{Be} + ?$$

d.
$$^{235}_{92}U \rightarrow ? + ^{231}_{90}Th$$

e.
$${}_{3}^{6}\text{Li} \rightarrow {}_{2}^{4}\text{He}^{2+} + ?$$

f.
$$? \rightarrow {}^{142}_{56} \text{Ba} + {}^{91}_{36} \text{Kr} + 3 {}^{1}_{0} \text{n}$$

Pre-lesson activity:

- What is the atomic mass?
- Why we do not use the absolute atomic mass?
- How the relative atomic mass was calculated?
- What is the value of *amu*?
- Why the atomic masses in the periodic table are not necessarily whole numbers?

Theme of the lesson

Atomic mass

Learning objectives

- ✓ Calculate relative atomic, molecular and formula masses.
- ✓ Explain why the atomic masses in the periodic table are not necessarily whole numbers.
- Calculate relative isotopic ratios from molar mass.

Success criteria

Student achieves if

- ✓ He/she will be able to calculate relative atomic, molecular and formula masses
- ✓ He/she can explain why the atomic masses in the periodic table are not necessarily whole numbers
- ✓ He/she will be able to calculate relative isotopic ratios from molar mass

The relative atomic mass is calculated using the equation:

$$A_r = \frac{(\% \ of \ Isotope \ 1 \times mass \ of \ Isotope \ 1) + \ (\% \ of \ Isotope \ n \times mass \ of \ Isotope \ n)}{100}$$

So in the case of chlorine:

$$A_r = \frac{(25\% \ o \times 37) + (75\% \ o \times 35)}{100} = 35.5$$

Task 1. Calculate the relative atomic mass of oxygen if its absolute atomic mass is equal to $26.67 \times 10^{-27} \text{kg}$

Task 2. What is the absolute atomic mass of sulfur atom?

Task 3. Calculate the average relative atomic mass for next isotopes of given elements:

- 69.2% ⁶³₂₉Cu and 30.8% ⁶⁵₂₉Cu
- 50% of $^{79}_{35}$ Br and 50% of $^{81}_{35}$ Br

Task 4. It is possible to do the reverse of a relative atomic mass calculation if you know the A_r which isotopes are present. (It involves a little bit of arithmetical algebra.) The A_r of boron is 10.81 and consists of only two isotopes,boron-10 and boron-11. Calculate the % composition of isotopes MS