Азот: кислородные соединения.

Особенности химии фосфора и элементов его подгруппы

Свойства оксидов азота

	N ₂ O	NO	N ₂ O ₃	NO ₂	N ₂ O ₅
$\Delta \emph{G}^{\circ}_{ m ofp.}$, кДж/мол	+104 (Γ)	+87 (г)	+139 (r)	+51 (Γ)	+115 (r)
т. пл., ° С	-90,9	-163,6	-101	-11,2 (N ₂ O ₄)	+41 (при повышенно м давлении)
т. кип., ° С	-88,6	-151,7	разл.	+21 (N ₂ O ₄)	разл.

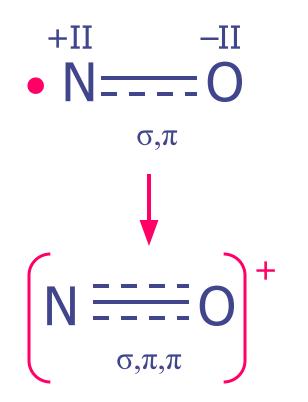
Оксид диазота N_2 О

- N₂O бесцв. газ со слабым приятным запахом и слабонаркотическим действием, т.пл. –91 °C, т. кип. –89 °C.
- N₂O несолеобр. оксид, сильный окислитель.
- Разложение:

$$2N_2O = 2N_2O + O_2$$

Монооксид азота NO

- NO бесцв. газ, несолеобр. оксид, т. пл. –164 °С, т. кип. –152 °С.
- Димеризация:


$$2NO_{(\Gamma)} \square N_2O_{2(x)}$$

• Окисление:

$$2NO + O_2 = 2NO_2$$


• Получение:

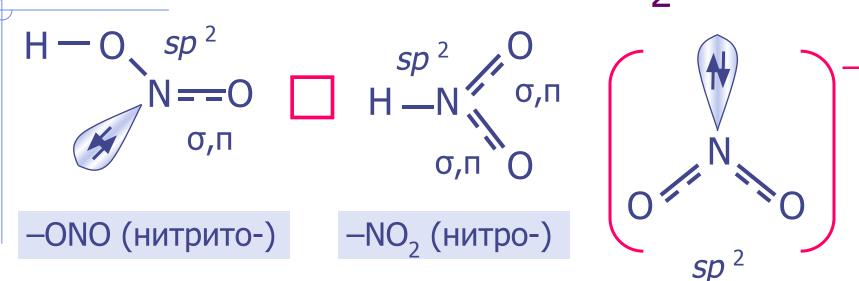
$$3Cu + 8HNO_3 =$$

= $3Cu(NO_3)_2 + 2NO\uparrow + 4H_2O$
 $3SO_2 + 2HNO_3 + 4H_2O =$
= $3H_2SO_4 + 2NO\uparrow$

Нитрозил-катион NO^+ : соль (NO) HSO_4

Триоксид диазота N_2O_3

Ст. окисл. ON^{II} – $N^{IV}O_2$ (NO^+)(NO_2^-) нитрит нитрозила


- N₂O₃ термически неуст., жидк. синего цвета, т.пл. –100 °C, т.кип. +3 °C.
- N_2O_3 кислотный оксид.
- Дисмутация:

$$N_2O_3 = NO + NO_2$$

25 °C: $\eta = 90\%$
120 °C: $\eta = 100\%$

$$N_2O_3 + H_2O =$$

$$= HNO_3 + NO$$

Азотистая кислота HNO₂

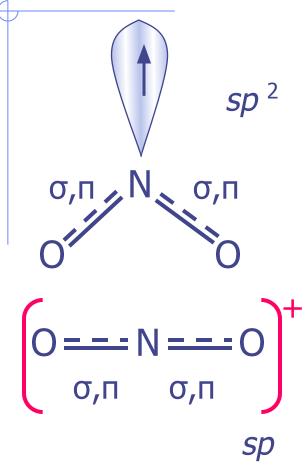
• Протолиз в водном p-pe:

$$HNO_2 + H_2O \square NO_2^- + H_3O^+; K_K = 5,13 \cdot 10^{-4}$$

• Устойчивы соли $M^{IA}NO_2$, $M^{IIA}(NO_2)_2$

Гидролиз:
$$NO_2^- + H_2O \square HNO_2 + OH^-$$
; pH > 7

Окислительно-восстановительные свойства


• Окислительные свойства

pH > 7:
$$NO_2^- + H_2^-O + 2e^- = NO + 2OH^-;$$

 $\phi^\circ = -0.45 \text{ B}$
pH < 7: $HNO_2^- + H^+ + 2e^- = NO + H_2^-O;$
 $\phi^\circ = +1.00 \text{ B}$

• Восстановительные свойства

pH > 7:
$$NO_2^- + 2OH^- - 2e^- = NO_3^- + H_2O;$$

 $\phi^\circ = +0,01 \text{ B}$
pH < 7: $HNO_2^- + H_2O - 2e^- = NO_3^- + 3H^+;$
 $\phi^\circ = +0,93 \text{ B}$

Диоксид азота $\cdot NO_2$

- $2NO_2 \square N_2O_4$ бурый газ \square бесцв. жидк.
- $N_2O_{4(x)} \square (NO^+)(NO_3^-)$
- Дисмутация:

$$3N_2O_4 + 2H_2O = 4HNO_3 + 2NO$$

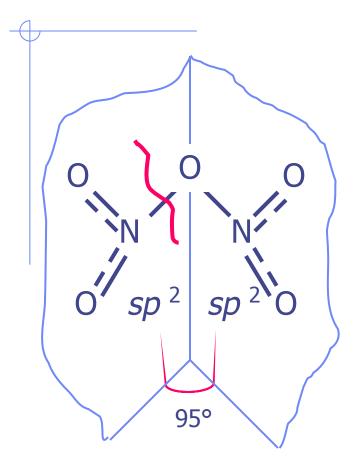
 $3NO_2 + H_2O = 2HNO_3 + NO$

•
$$2NO_2 + 2KOH =$$

= $KNO_3 + KNO_2 + H_2O$

Получение

В промышленности $2NO + O_2 \square 2NO_2$ $2NO_2 + O_2 + H_2O = 2 HNO_3$ В лаборатории Cu + 4HNO₃(конц) = $= Cu(NO_3)_2 + H_2O + 2NO_2 \uparrow$ (с примесями) $2Pb(NO_3)_2 = 2PbO + 4NO_2\uparrow + O_2\uparrow$ (+t) $2NO_2 \square N_2O_4 (-t)$ $2N_2O_4 + H_2O = 2HNO_3 + N_2O_3$

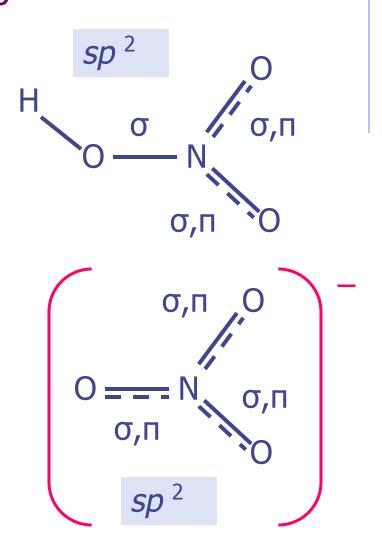


Термическое разложение $Pb(NO_3)_2$ и взаимодействие N_2O_4 с водой

Видео: разложение

Видео: + вода

Пентаоксид диазота N_2O_5


- N₂O₅ бесцв. крист.,
 гигроскопичен, т.пл.
 +41 °C, т.субл. +32 °C.
- N_2O_5 сильнейший окислитель.
- Получение:

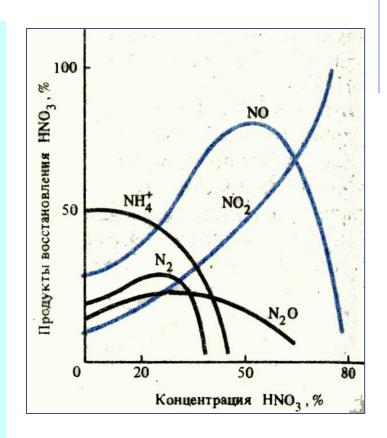
$$2NO_2 + O_3 = N_2O_5 + O_2$$

 $4HNO_3 + P_4O_{10} =$
 $= (HPO_3)_4 + 2N_2O_5$

 $(NO_{2}^{+})(NO_{3}^{-})$ – нитрат нитроила

Азотная кислота HNO_3

- HNO₃ бесцветная жидкость, дымящая на воздухе, т. пл. —41,6 °C, т.кип. +82,6 °C, гигроскопична, неогранич. р-рима в воде.
- HNO_3 сильная к-та: $HNO_3 + H_2O = NO_3^- + H_3O^+$
- Разложение на свету: $4HNO_3 = 4NO_2 + O_2 + H_2O$



Окислительные свойства HNO₃

•
$$NO_3^- + 2H^+(конц.) + 1e^- =$$

= $NO_2^- + H_2^-O; \phi^\circ = +0,77B$

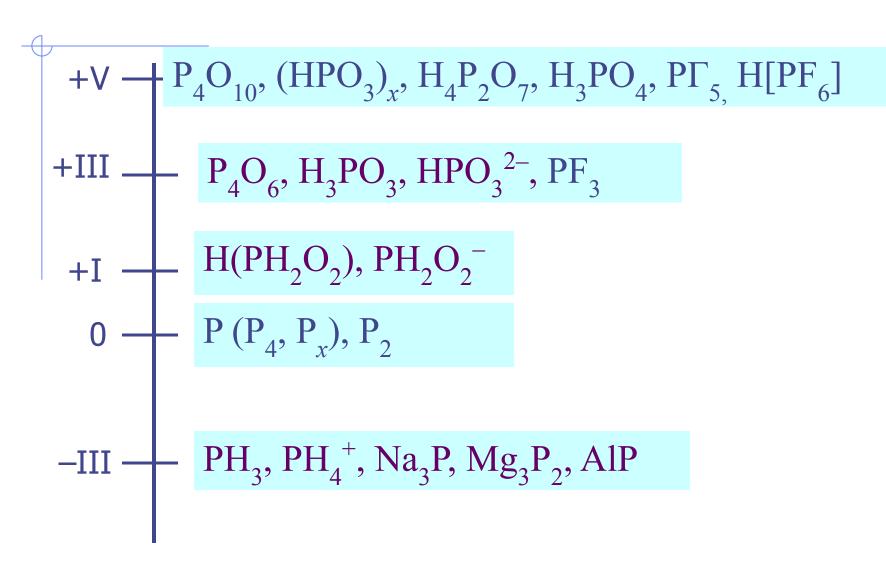
•
$$NO_3^- + 4H^+(pa36.) + 3e^- =$$

= $NO + 2H_2O; \phi^\circ = +0.96 B$

•
$$NO_3^- + 10H^+(ou.pas6.) + 8e^- =$$

= $NH_4^+ + 3H_2O; \phi^\circ = +0.88 B$

Продукты взаимодействия железа и HNO₃

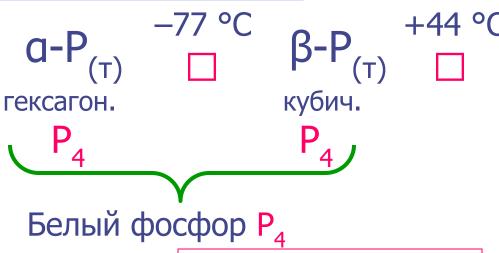

«Царская водка»: $HNO_3(\kappa) + HCl(\kappa)$ (1:3 по объему)

- $3HCl + HNO_3 \square NOCl + 2[Cl^0] + H_2O$
- Au + $4HCl + HNO_3 = H[AuCl_4] + NO\uparrow + 2H_2O$
- $3Pt + 18HCl + 4HNO_3 = 3H_2[PtCl_6] + 4NO\uparrow + 8H_2O$

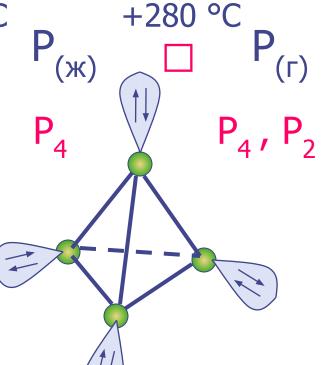
Термическое разложение нитратов

$$t$$
 MNO₂ + O₂ (до Mg)
MO + NO₂ + O₂ (Mg-Cu)
M + NO₂ + O₂ (Ag, Au, Hg...)

Шкала степеней окисления фосфора



Еще раз о полиморфизме



+250 °С, кат. I₂, Na, S

Красный фосфор Р

p, t

Черный фосфор (sp^2 , тип графита)

p, t

Т-ра вспышки: белый ф. +34 °C, красный ф. +240 °C, черный ф. +400 °C

«Металлический» фосфор

Дисмутация фосфора в щелочной среде

на холоду:

$$4P + 3NaOH(pa36) + 3H_2O = 3NaH_2P^{+I}O_2 + P^{-III}H_3\uparrow$$

 $P + 3H_2O + 3e^- = PH_3 + 3OH^-$
 $P + 2OH^- - 1e^- = H_2PO_2^-$ (гипофосфит-ион)
при нагревании:

• 2P + 2NaOH(конц) +
$$H_2O = Na_2HP^{+III}O_3 + P^{-III}H_3\uparrow$$

P + $3H_2O + 3e^- = PH_3 + 3OH^-$
P + $5OH^- - 3e^- = HPO_3^{3-} + 3H_2O$ (фосфит-ион)

• Получение

прокаливание фосфорита с углем и песком

$$2Ca_3(PO_4)_2 + 10C + 6SiO_2 = 2P_2\uparrow + 10CO\uparrow + 6CaSiO_3$$

Фосфиды

 $\ni -M^{IA},M^{IIA},Cu,Zn$

$$Ca_3P_2 + 6H_2O =$$

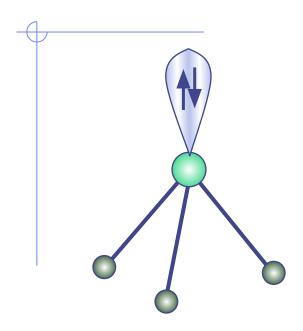
= $2PH_3\uparrow + 3Ca(OH)_2$

 $\exists_x P_y$

Ковалентные

AIP

$$AIP + 3H2O =$$


$$= AI(OH)3 + PH3\uparrow$$

Металлоподобные

(для d-элементов)

Fe₃P, Fe₂P, FeP, FeP₂

Фосфин PH_3

 sp^3 — гибридизация

 PH_4^{+} - катион фосфония

Соли: PH₄ClO₄, PH₄Cl ...

$$PH_4^+ + H_2O = PH_3\uparrow + H_3O^+$$

- PH₃ (монофосфин) ядовитый газ с отвратительным запахом.
- P_2H_4 (дифосфин) аналог гидразина.
- Получение:

$$Zn_{3}P_{2} + 6H_{2}O =$$
 $= 2PH_{3}\uparrow + 3Zn(OH)_{2}$
 $PH_{4}I + H_{2}O = PH_{3}\uparrow + HI$
Реакции дисмутации в p-pe щелочи

• Восст. свойства:

$$8AgNO_3 + PH_3 + 4H_2O =$$

= $8Ag \downarrow + H_3PO_4 + 8HNO_3$

Кислородные кислоты

• **Фосфорноватистая** (*фосфоновая*) к-та, одноосновная

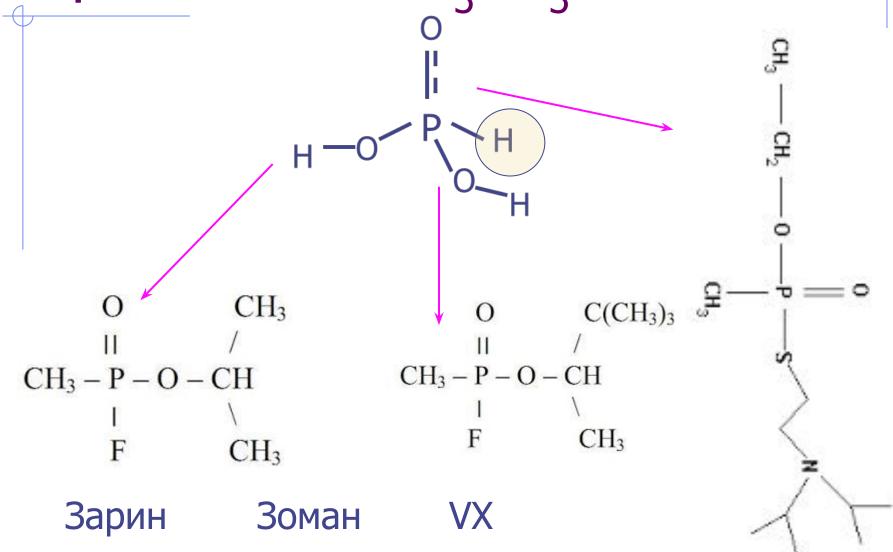
$$H(PH_2O_2) + H_2O \square (PH_2O_2)^- + H_3O^+; K_K = 7,94\cdot10^{-2}$$

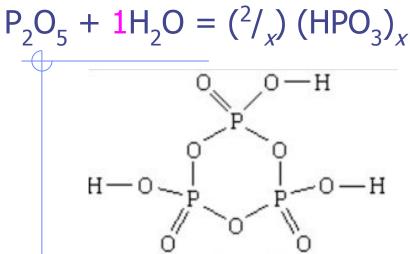
• Фосфористая (фосфиновая) к-та, двухосновная

$$H_2(PHO_3) + H_2O \square H(PHO_3)^- + H_3O^+; K_K = 1,00\cdot10^{-2}$$

 $H(PHO_3)^- + H_2O \square (PHO_3)^{2-} + H_3O^+; K_K = 2,57\cdot10^{-7}$

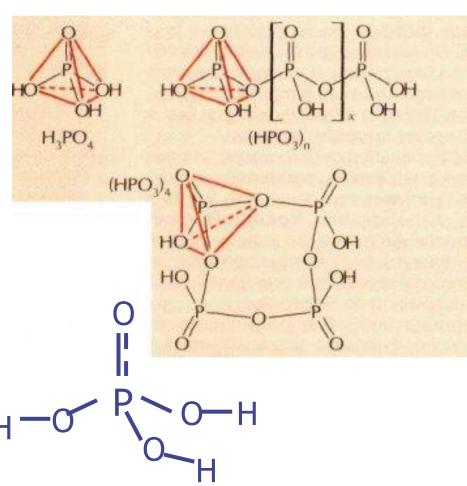
• Ортофосфорная к-та, трехосновная


$$H_{3}PO_{4} + H_{2}O \square H_{2}PO_{4}^{-} + H_{3}O^{+}; K_{K} = 7,24 \cdot 10^{-3}$$
 $H_{2}PO_{4}^{-} + H_{2}O \square HPO_{4}^{2-} + H_{3}O^{+}; K_{K} = 6,17 \cdot 10^{-8}$
 $HPO_{4}^{2-} + H_{2}O \square PO_{4}^{3-} + H_{3}O^{+}; K_{K} = 4,57 \cdot 10^{-13}$


- Дифосфорная к-та H₄P₂O₇
- Полиметафосфорная к-та $(HPO_3)_x$

Строение кислородных кислот: *sp* ³

Производные H_3PO_3 - OB



триметафосфорная кислота

пирофосфорная кислота

$$P_2O_5 + 2H_2O = H_4P_2O_7$$

$$P_2O_5 + 3H_2O = 2H_3PO_4$$

$$2H_{3}PO_{4} \xrightarrow{-H_{2}O} H_{4}P_{2}O_{7}$$

$$3H_{3}PO_{4} \xrightarrow{-2H_{2}O} H_{5}P_{3}O_{10}$$

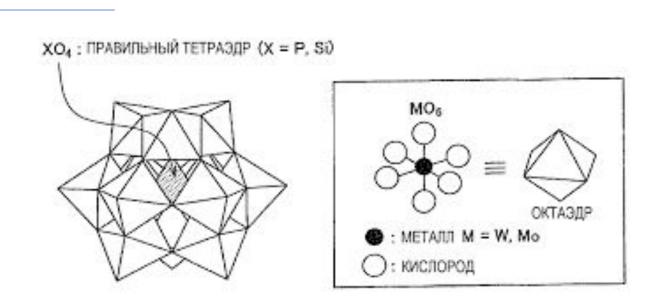
$$4H_{3}PO_{4} \xrightarrow{-3H_{2}O} H_{6}P_{4}O_{13}$$

$$nH_{3}PO_{4} \xrightarrow{-(n-1)H_{2}O} H_{n+2}P_{n}O_{3n+1}$$

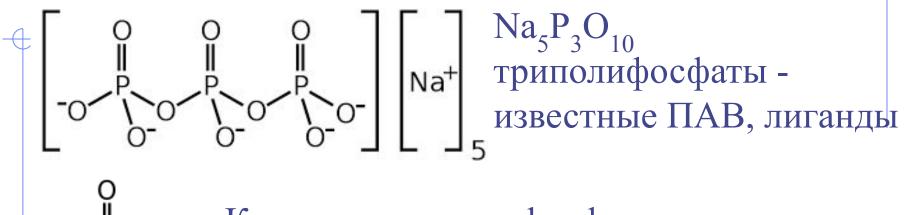
$$^{4\text{H}_{3}\text{PO}_{4}}$$
 $\xrightarrow{-4\text{H}_{2}\text{O}}$ $^{(\text{HPO}_{4})_{4}}$ $^{n\text{H}_{3}\text{PO}_{4}}$ $\xrightarrow{-n\text{H}_{2}\text{O}}$ $^{(\text{HPO}_{3})_{n}}$

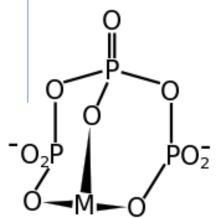
Р₂-к-та (пиро-, или дифосфорная к-та)

Р3-к-та (трифосфорная)

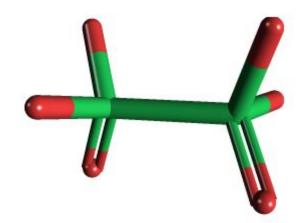

Р₄-к-та (тетрафосфорная)

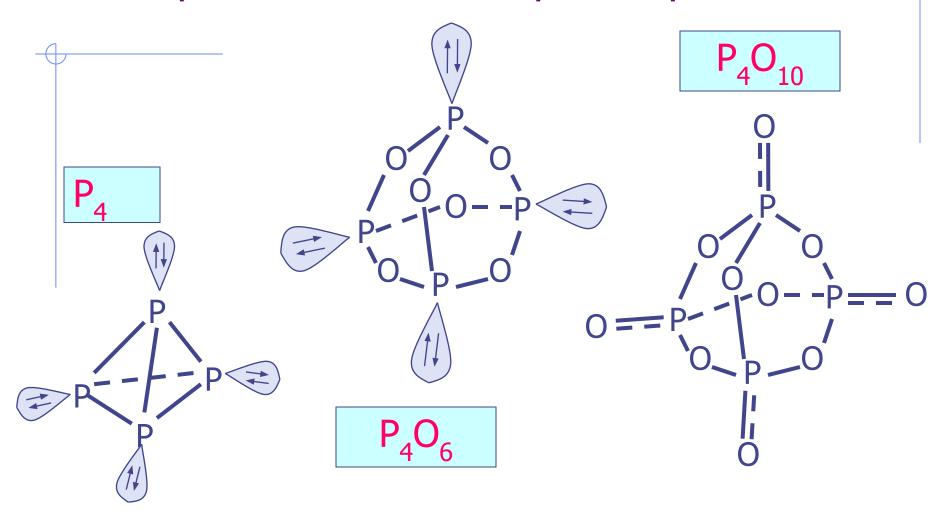
Р_п-к-ты (полифосфорные, цепочечные)


Р_{3с}-к-та (трициклофосфорная)


P_{4c}-к-та (тетрациклофосфорная)

 P_{nc} -к-ты (метафосфорные, $n \ge 3$)


Н₃РО₄*12Мо(W)О₃ фосформолибденовая и фосфорвольфрамовая кислоты как пример гетерополикислот



Комплекс триполифосфат-иона с ионом металла - комплексообразователя M³⁺

Фосфорноватая кислота $H_4P_2O_6$, Соли — гипофосфаты $H_3PO_4 + H_3PO_3 = H_4P_2O_6 + H_2O$

Строение оксидов: *sp* ³-гибридизация

Метафосфорная к-та $(HPO_3)_x$ – тетраэдры, связанные углами

Окислительно-восстановительные свойства

pH < 7:
$$H_{3}PO_{2} + H_{2}O - 2e^{-} = H_{3}PO_{3} + 2H^{+}$$

 $\phi^{\circ} = -0.49 \text{ B}$
pH > 7: $H_{2}PO_{2}^{-} + 3 \text{ OH}^{-} - 2e^{-} = HPO_{3}^{2-} + 2H_{2}O$
 $\phi^{\circ} = -1.57 \text{ B}$
pH < 7: $H_{3}PO_{3} + H_{2}O - 2e^{-} = H_{3}PO_{4} + 2H^{+}$
 $\phi^{\circ} = -0.28 \text{ B}$
pH > 7: $HPO_{3}^{2-} + 3 \text{ OH}^{-} - 2e^{-} = PO_{4}^{3-} + 2H_{2}O$
 $\phi^{\circ} = -1.12 \text{ B}$

Пример:

$$H_3PO_3 + 2AgNO_3 + H_2O = H_3PO_4 + 2Ag + 2HNO_{3 pas6}$$

Разделение сурьмы и висмута (сульфидный метод)

1. Осаждение сульфидов $(+H_2S)$

+V
$$As_2S_5$$
 Sb_2S_5 Bi_2S_5
+III As_2S_3 Sb_2S_3 Bi_2S_3
 $(\Pi P \approx 10^{-90} \div 10^{-105})$

2. Растворение (+Na₂S)

$$Sb_{2}S_{5(T)} + S^{2-} \square [SbS_{4}]^{3-}$$

 $Sb_{2}S_{3(T)} + S^{2-} \square [SbS_{3}]^{3-}$
 $Bi_{2}S_{3(T)} + S^{2-} \neq$

3. Осаждение (+HCl)

$$[SbS_4]^{3-} + H_3O^+ \square Sb_2S_{5(\tau)} + H_2S\uparrow$$

 $[SbS_3]^{3-} + H_3O^+ \square Sb_2S_{3(\tau)} + H_2S\uparrow$

Особенности химии висмута

$$Bi + 6HNO_{3} = Bi(NO_{3})_{3} + 3NO_{2} + 3H_{2}O$$

$$Bi(NO_{3})_{3} + 6H_{2}O \rightarrow [Bi(OH_{2})_{6}]^{3+} + 3NO_{3}^{-}; pH <<7$$

$$[Bi(OH_{2})_{6}]^{3+} + 2H_{2}O \rightarrow [Bi(OH)_{2}(OH_{2})_{4}]^{+} + 2H_{3}O^{+}$$

$$OH^{-} BiO^{+} + 5H_{2}O (2 < pH < 6)$$

$$Bi(OH)_{3}^{-} + NaOH \rightarrow$$

$$[Bi(OH_{2})_{6}]^{3+} + 4I^{-} \rightarrow [BiI_{4}]^{-} + 6H_{2}O$$

$$Bi(OH)_3 + O_3 + KOH \rightarrow KBiO_3 \downarrow + H_2O$$