Атомная физика

ЛЕКЦИЯ 6.

Принцип Паули. Периодическая система элементов Д.И. Менделеева.

1. Принцип Паули.

Энергия электрона зависит только от главного квантового числа \mathbf{n} . Следовательно, каждому собственному значению энергии $\mathbf{E}_{\mathbf{n}}$ соответствует несколько собственных функций ψ_{nlm} , отличающихся значениями квантовых чисел l и m.

Состояния с одинаковой энергией называются вырожденными, а их число — кратностью вырождения.

Кратность вырождения уровней водорода легко вычислить исходя из возможных значений квантовых чисел l и m.

$$l = 0,1,2, \ldots, (n-1).$$

Каждому из \mathbf{n} значений l соответствует 2l+1 квантовых чисел \mathbf{m} :

$$m = -l, -(l-1), ..., 0, ..., (l+1), l.$$

Следовательно, число различных состояний, соответствующих данному **n**, равно:

$$\sigma^{\text{m-m}} + \text{m} = \text{m}$$

Так как электрон обладает собственным механическим моментом импульса (спином) спин L_s , то с ним оказывается связанным некоторый собственный магнитный момент p_{ms} . В соответствии с выводами квантовой механики спин квантуется по закону:

$$\mathbb{X}_{\mathbb{M}} = h \mathbb{X} \overline{\mathbb{X}(\mathbb{M} + \mathbb{M})}$$

Вектор L_s может принимать 2s+1 ориентаций.

Так как в опытах Штерна и Герлаха наблюдались только две ориентации, то 2s+1=2, а $s=\frac{1}{2}$. Проекция спина на направление магнитного поля также является квантованной величиной и определяется выражением:

 $L_{sz} = \hbar m_s$

где m_s - магнитное спиновое квантовое число, принимающее только два значения: $m_s = \pm \frac{1}{2}$. В результате, так как данному п соответствует п² состояний, отличающихся различных значениями l и m_l , а квантовое число m_s может максимальное число электронов, находящихся в состояниях, определяемых данным главным квантовым числом n, равно $2n^2$:

$$\mathbf{Z}(\mathbf{n}) = \mathbf{\sigma}_{\mathbb{R}^{+}}^{\mathbb{R}^{+}} \mathbb{R}^{+} \mathbb{R}^{$$

В результате изучения атомных спектров и химических взаимодействий было установлено, что при монотонном увеличении порядкового номера свойства элементов изменяются периодически.

Швейцарский физик В. Паули в 1925 г. сформулировал принцип, который позволил объяснить наблюдаемую на опыте периодичность свойств; в 1945 г. ему была присуждена Нобелевская премия.

Элементарная формулировка принципа Паули: В системе одинаковых частиц, подчиняющихся статистике Ферми-Дирака, любые две из них не могут находиться одновременно в одном и том же состоянии.

Распределение электронов в атоме подчиняется принципу Паули, который для атомов может быть сформулирован таким образом: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел n, l, m_l и m_s , то есть $Z(n, l, m_l, m_s) = 0$ или 1,

где $Z(n,l,m_l,m_s)$ — число электронов, находящихся в квантовом состоянии, описываемом набором четырех квантовых чисел n, l, m_l и m_s .

Это значит, что каждый электрон в атоме имеет отличное от других электронов состояние.

Как было установлено, этому принципу подчиняются все частицы, имеющие полуцелый спин (такие частицы принято называть фермионами).

2. Распределение электронов по оболочкам и подоболочкам.

Совокупность электронов, которые имеют одинаковое значение главного квантового числа *n*, образуют оболочку. Их принято обозначать большими латинскими буквами:

$$K(n=1), L(n=2), M(n=3), N(n=4)$$
 и т. д.

Совокупность электронов, которые имеют одинаковое значение квантовых чисел n и ℓ , образуют подоболочки; их принято обозначать соответствующими значениями главного квантового числа и малыми латинскими буквами $s(\ell=0), p(\ell=1), d(\ell=2), f(\ell=3)$ и т. д.

Например, в подоболочке 3p n=3, $\ell=1$.

Согласно принципу Паули можно построить схему распределения электронов по оболочкам и подоболочкам, как указано в таблице 3.

Максимальное число электронов в оболочке $2n^2$, в подоболочке $2(2\ell+1)$. В полностью заполненной подоболочке результирующий, орбитальный и спиновый моменты равны нулю (L=0, S=0, J=0).

В основном (невозбужденном) состоянии электроны занимают такие состояния, которые соответствуют минимуму энергии.

Таблица 3

Обо- лочки	n	l			Подобо- лочки	Максимальное число электронов в подоболочке 2\(\text{\mathbb{2}\climps}\) + 1\(\text{\mathbb{M}}\)	Максимальное число электронов в оболочке $2n^2$
K	1	0	0	$\pm 1/2$	1s	2	2
		0	0	$\pm 1/2$	2s	2	
L	2	1	-1 0 +1	$\pm 1/2$ $\pm 1/2$ $\pm 1/2$	2 p	6	8
		0	0	±1/2	3s	2	
		1,	-1 0 +1	$\pm 1/2$ $\pm 1/2$ $\pm 1/2$	3р	6	
M	3	2	-2 -1 0 +1 +2	$\pm 1/2$ $\pm 1/2$ $\pm 1/2$ $\pm 1/2$ $\pm 1/2$	3d	10	18

В таблице 4 представлено распределение электронов по оболочкам и подоболочкам в атомах периодической системы элементов Менделеева; число электронов в подоболочке обозначается верхним индексом.

Таблица 4

1	H	Is^{I}		<i>10</i> .	Ne	$1s^2 2s^2 2p^6$
2.	He	$1s^2$		11.	Na	$1s^2 2s^2 2p^6 3s^1$
3.	Li	$1s^22s^1$		<i>12</i> .	Mg	$1s^2 2s^2 2p^6 3s^2$
4	Be	$1s^22s^2$		<i>13</i> .	Al	$1s^2 2s^2 2p^6 3s^2 3p^1$
5.	В	$1s^2 2s^2 2p^1$		14.	Si	$1s^2 2s^2 2p^6 3s^2 3p^2$
6.	\boldsymbol{C}	$1s^2 2s^2 2p^2$		<i>15</i> .	P	$1s^2 2s^2 2p^6 3s^2 3p^3$
7.	N	$1s^2 2s^2 2p^3$		16.	S	$1s^2 2s^2 2p^6 3s^2 3p^4$
8.	0	$1s^2 2s^2 2p^4$	8	<i>17</i> .	Cl	$1s^2 2s^2 2p^6 3s^2 3p^5$
9.	\overline{F}	$1s^2 2s^2 2p^5$		<i>18</i> .	Ar	$1s^2 2s^2 2p^6 3s^2 3p^6$

Такой «правильный» порядок заполнения электронных подоболочек до 18 элемента соответствует наименьшей энергии атома. Для состояний с главным квантовым числом n=3 (и *n>3*) экранирующий эффект внутренних подоболочек вызывает изменения в энергии. Например, энергия электронов в подоболочке 4s будет меньше по сравнению с энергией в подоболочке 3d, также раньше заполняется подоболочка 5s, а потом подоболочка 4d. Порядок заполнения можно представить в виде следующей схемы: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p,

5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d Переходные элементы в периодической системе соответствуют атомам с «неправильным» заполнением подоболочек.

3. Периодическая система элементов Д.И. Менделеева

Анализ распределения электронов по оболочкам приводит к следующим выводам. Например, все **щелочные металлы (Li, Na, K, Rb, Cs, Fr)**, имеющие один электрон на **внешней подоболочке**, одновалентны. Их оптические спектры имеют одинаковую структуру (но частоты линий спектра различны!).

В переходных элементах группы железа (Ti, V, Cr, Mn, Fe, Co, Ni, Cu) Z=22÷29 сначала заполняется подоболочка 3d за счет перескока электронов с подоболочек 4s и 4p.

В элементах редкоземельной группы (лантаноиды Z=58÷71) заполняются подоболочки 4f и 5d, но на внешних подоболочках имеется одинаковое число электронов; они имеют почти одинаковые химические свойства.

Инертные газы **He**, **Ne**, **Ar**, **Kr**, **Xe**, **Rn** имеют полностью заполненные внешние подоболочки (2 электрона у гелия, по 8 электронов у остальных); эти элементы имеют самые высокие ионизационные потенциалы, в то время как соседи слева (галогены), так и соседи справа (щелочные металлы) имеют самые низкие потенциалы ионизации.

Принцип Паули и эффект экранирования заряда ядра электронами внутренних подоболочек позволяют объяснить строение электронных оболочек, а также теоретически обосновать периодическую систему элементов Менделеева.

Оптические спектры возникают вследствие возбуждения атомов за счет перехода электронов с внешних подоболочек на более высокие энергетические уровни. Для осуществления такого перехода необходима определенная энергия; обратный переход может осуществляться самопроизвольно (спонтанно). При спонтанных переходах излучается оптический спектр, поэтому электроны внешних подоболочек называются тическими или валентными.

В оптических атомных спектрах могут возбуждаться не все линии серии; например, в атоме водорода может быть лишь одна красная линия серии Бальмера (или две - красная и голубая). Это обусловлено степенью возбуждения атома.

Элемент $\it Z$		K	L		M			N		Основной
		1s	2s	2 <i>p</i>	3s	3 <i>p</i>	3d	4s	4 p	терм
1	н	1		_		_		<u>~</u>		${}^{2}S_{1/2}$
2	He	2	-	==	-				7 <u>2-72</u> 7 <u>2-72</u>	${}^{1}S_{0}^{1/2}$
3	Li	2	1		_	_	_	-	-	${}^{2}S_{1/2}$
4	Be	2	2		-		* <u></u> #		_	1 * S -
5	В	2	2	1	_	_			-	
6	C	2	2	2	_	_	-		_	Pa
7	N	2	2	3	_					The state of the s
8	O	2	2	4	_		-		-	P_{2}
9	F	2	2	5	-	_	-			$P_{2/2}$
10	Ne	2	2	6	_		_			${}^{1}S_{0}^{-3/2}$
11	Na	2	2	6	1	22 <u>—</u> 2				${}^2S_{1/2}$
12	Mg	2	2	6	2			-	_	_ O_
13	Al	2	2	6	2	1	_	_		- D
14	Si	2	2	6	2	2	_	, 	-	$^{\circ}P_{\circ}$
15	P	2	2	6	2	3			=	
16	S	2	2	6	2	4	2 <u></u>			P_0
17	Cl	2	2	6	2	5				$^{-}P_{3/2}$
18	Ar	2	2	6	2	6			_	$^{1}S_{0}$
19	K	2	2	6	2	6	_	1	_	${}^{2}S_{1/2} \ {}^{1}S_{0}$
20	Ca	2	2	6	2	6	-	2		$^{1}S_{0}$
21	Sc	2	2	6	2	6	1	2	-	$^{2}D_{3/2}$
22	Ti	2	2	6	2	6	2	2		${}^{2}D_{3/2} \ {}^{3}F_{2}$