
Презентация на тему: Амины

Подготовил студент 1-ого курса Ангел Игорь Факультет ГРТСИ группа 190-01бТП/16

- Амины органические производные аммиака, в молекулах которого один, два или все три атома водорода замещены органическими радикалами.
- По числу радикалов амины делятся на первичные, вторичные и третичные.

По типу простейших радикалов амины делятся на предельные, непредельные и ароматические:

Предельный амин:	Непредельный амин:	Ароматический амин: С ₆ Н ₅ —NН ₂ фениламин (анилин)	
СН ₃ —СН ₂ —NН ₂ этиламин (аминоэтан)	СН ₂ =СН—СН ₂ —NН ₂ аллиламин (3-аминопропен-1)		

Номенклатура аминов

C₃H₇

5. $CH_3 - N - CH_3$

 CH_3

PAДИКАЛ + AMИН1. $CH_3 - NH - CH_3$ ДИМЕТИЛАМИН

2. $CH_3 - NH_2$ МЕТИЛАМИН

3. $C_6H_5 - NH_2$ фениламин (анилин)

4. $H - N - CH_3$ МЕТИЛПРОПИЛАМИН

Таким образом, к названиям органических групп, которые связаны с азотом, доставляют слово «амин» и располагают их в алфавитном порядке.

триметиламин

Также в составлении названия, правила допускают брать за основу углеводород, который можно рассматривать, как замену аминогруппы. Здесь положение аминов принято указывать благодаря числовому индексу.

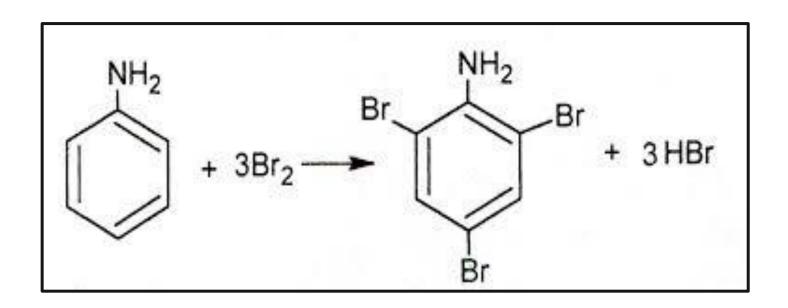
Изомеры и гомологи

Γ	СН ₃ —NH ₂ аминометан (этиламин)				
O M	СН ₃ —СН ₂ —NН ₂ аминоэтан (этиламин)			СН ₃ —NH—СН ₃ диметиламин	
О	СН ₃ —СН ₂ —СН ₂ —NН ₂ 1-аминопропан (пропиламин)	CH₃CHCH₃ NH₂ 2- аминопропан		СН ₃ —NH—СН ₂ —СН ₃ метилэтиламин	СН₃−N−СН₃ I СН₃ триметиламин
о г	СН ₃ —СН ₂ —СН ₂ —СН ₂ —NН ₂ 1-аминобутан (бутиламин)	СН₃СНСНСН₃ NН₂ 2-аминобутан	СН ₃ СН ₃ ССН ₃ NH ₂ 2-амино-2- метилпропан	СН ₃ —NH—СН ₂ СН ₂ СН ₃ метилпропиламин	СН ₃ —N – СН ₂ СН ₃ I СН ₃ димети <mark>л</mark> этиламин

Химические свойства

• Горение: $4CH_3NH_2 + 9O_2 \longrightarrow 4CO_2 + 10H_2O + 2N_2$ $4C_6H_5NH_2 + 31O_2 \longrightarrow 24CO_2 + 14H_2O + 2N_2$

• Взаимодействие с водой: CH₃NH₂ + H₂O ← CH₃NH₃ + OH Анилин с водой практически не реагирует. • Взаимодействие с кислотами (основные свойства):

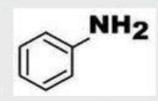

$$2CH_3NH_2 + H_2SO_4 \rightarrow (CH_3NH_3)_2SO_4$$

сульфат метиламмония

$$C_6H_5NH_2 + HCI \rightarrow (C_6H_5NH_3)CI$$

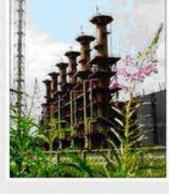
хлорид фениламмония

Реакции замещения в ароматических аминах (реакция анилина с бромной водой или с азотной кислотой):



Физические свойства.

Простейшие амины - газы с запахом аммиака, более сложные жидкости с запахом рыбы, высшие твердые нерастворимые в воде вещества. Температуры кипения и растворимость в воде у аминов меньше, чем у соответствующих спиртов.



Вредное воздействие

Но также, следует знать, что амины — это вещества, которые довольно таки токсичны. Они представляют опасность при вдыхании их паров, а также при контакте с кожным покровом. А такой амин, как, например, анилин, обладает способностью проникновения через кожу в кровь и может нарушить функции гемоглобина, и тем самым привести к летальному исходу.

При попадании аминов в кровь появляются такие симптомы, как одышка, посинение губ, носа и кончиков пальцев. Также при отравлении наблюдается учащенное дыхание и сердцебиение. А в некоторых случаях может дойти и до потери сознания.