

Задания С1 ЕГЭ по математике

1.
$$\cos(\frac{3}{2}\pi + 2x) = \cos x$$
; $\left[\frac{5}{2}\pi; 4\pi\right]$,

2.
$$6\cos^2 x - 7\cos x - 5 = 0$$
; $[-\pi; 2\pi]$,

3.
$$3\sin 2x - 4\cos x + 3\sin x - 2 = 0; \left[-\pi; \frac{3}{2}\pi\right],$$

4.
$$\cos 2x - \cos(2\pi - x) = 0;$$
 $\left[0; \frac{5}{2}\pi\right],$

5.
$$4\cos^2(\frac{\pi}{2} + x) = 12\sin x + 5 = 0; [-\pi; 2\pi]$$

6.
$$6\sin^2 x + \cos x - 5 = 0$$
; $[2\pi; 3\pi]$,

7.
$$2\sin 2x + \cos x + 4\sin x + 1 = 0; \quad \left[\frac{5}{2}\pi; \frac{7}{2}\pi\right],$$

8.
$$2\sin^2 x + \sin x \cos x - 3\cos^2 x = 0;$$
 $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right],$

9.
$$\frac{1}{\cos x - 1} + \frac{1}{\cos x + 1} = 2 \operatorname{ctg}^2 x$$
; $\left[-\frac{\pi}{2}; 8 \right]$

10. 2
$$\cos^2 x + \sin(\pi + x) - 1 = 0$$
; [-4 π ;-3 π]

11.
$$\cos 6x - \cos 3x = 0$$
; [0; π]

12.
$$\frac{3}{2}$$
tgx sin2x - 2 cos2x = 8sin x -5; $\left[\frac{\pi}{2}; \pi\right]$

13.
$$\sin 2x = \cos x$$
; $[-\pi; \frac{3\pi}{4}]$

14.
$$\cos 2x - \cos x + 1 = 0$$
; $[-\pi; \pi]$

15.
$$\sin x + \lg x = \sin 2x$$
; [0; 3π]

16. cos
$$2x = 1 + \sin 2x$$
; $[-2\pi; 2\pi]$

17.
$$\sin x + 2 \cos^2 x = \cos x + \sin 2x$$
; $\left[-\frac{\pi}{2}, \frac{5\pi}{2} \right]$

18.
$$\cos x = (\cos \frac{x}{2} - \sin \frac{x}{2})^2 - 1; [\frac{\pi}{2}; 2\pi]$$

19.
$$2\sin 2x = 4\cos x - \sin x + 1; \left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$$

20.
$$3\cos^2(\frac{3}{2}\pi - x) + 5\sin x \cos x + 2\cos^2 x = 0;$$

[-3 \pi; -2 \pi]

21.
$$2\cos^2 x + (2 - \sqrt{2})\sin x + \sqrt{2} - 2 = 0$$
; [-3 π ; -2 π]

22.
$$\frac{3}{2}$$
tgx sin2x - 2cos²x = 8sin x -5; $[\frac{\pi}{2}; \pi]$

23.
$$2\cos^2 x - \cos 2x = 2\sin^2 x - \sin 2x$$
; $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

24.
$$\cos x = (\cos \frac{x}{2} - \sin \frac{x}{2})^2 - 1; [-\frac{\pi}{2}; \pi]$$

Решение тригонометрических уравнений с отбором корней на заданном промежутке

<u>Тригонометрические</u> формулы

Способы отбора корней

Формулы корней простейших тригонометрических уравнений

Методы решения <u>тригонометрических</u> уравнений

Решение тригонометрических уравнений с <u>отбором корней</u> на заданном промежутке

Тригонометрические формулы

arccos(-0,5)	sin(0,5	arcsin(-0,5)
sin 6x	π+x) cos ² x-1	cos (1,5π-x)
Cos(-4	Tg ² (1,5	$3\sin^2 4x + 3\cos^2 4x$
π/3) 2tg405°	π+x) sin 150°	вперед cos ² x-sin ² x

Методы решений тригонометрических уравнений

Основные методы:

- замена переменной,
- разложение на множители,
- •однородные уравнения, прикладные методы:
- по формулам преобразования суммы в произведение и произведения в сумму,
- по формулам понижения степени,
- универсальная тригонометрическая подстановка
- введение вспомогательного угла,
- умножение на некоторую тригонометрическую

WATERINE

Формулы корней простейших тригонометрических уравнений

Формулы	корней тригонометрических	уравнений
Sin x =a, $X = (-1)^n \arcsin a + \Pi n$ $n \in \mathbb{Z}$	$\mathbf{Cos} \ \mathbf{x} = \mathbf{a},$ $\mathbf{X} = \pm \arccos \mathbf{a} + 2\Pi \mathbf{n}$ $\mathbf{n} \in \mathbf{Z}$	$tg x = a,$ $x = arctg a + \Pi n$ $n \in \mathbf{Z}$
Частные	случаи решения	уравнений
$ sin x = 0 X = \Pi n, n \in \mathbb{Z} $	$\cos \mathbf{x} = 0$ $\mathbf{X} = \Pi/2 + \Pi \mathbf{n}, \mathbf{n} \in \mathbf{Z}$	$tg x = 0$ $X = \Pi n, n \in \mathbb{Z}$
$\sin x = 1,$ $X = \Pi/2 + 2 \Pi n, n \in Z$	$\cos x = 1,$ $X = 2\Pi n, n \in \mathbb{Z}$	
$\sin x = -1,$ $X = -\Pi/2 + 2\Pi n, n \in \mathbb{Z}$	$\cos x = -1,$ $X = \Pi + 2 \Pi n, n \in \mathbb{Z}$	

Способы отбора корней тригонометрических уравнений на заданном промежутке

• Арифметический способ

Перебор значений целочисленного параметра n и вычисление корней

• Алгебраический способ

Перебор значений целочисленного параметра n и вычисление корней

• Геометрический способ

Изображение корней на тригонометрической окружности с последующим отбором с учетом имеющихся ограничений

Арифметический способ

Перебор значений целочисленного параметра *n* и вычисление корней

 $(-1)^k \arcsin a + \pi k$

- 1. Решить уравнение
- Записать корни уравнения
- 3. Разделить виды решения для косинуса; подсчитат значения x при целых n до тех пор, пока значения x не выйдут за пределы данного x

	$\cos x = a, a \le 1$
	$\bar{x} = \arccos a + 2\pi k, k \in \mathbb{Z}$
- 1	$x = -\arccos a + 2\pi k, k \in \mathbb{Z}$

X	k	-2	-1	0	1	2	•••
arccos	$a+2\pi k$						
-arccos	$a + 2\pi k$						

$$\sin x = a, |a| \le 1$$

$$x = (-1)^k \arcsin a + \pi k, k \in \mathbb{Z}$$

4. Записать ответ.

отрезка.

Алгебраический способ

Решение неравенства относительно неизвестного параметра n и вычисление корней

- 1. Записать двойное неравенство для неизвестного (x), соответственное данному отрезку или условию; решить уравнение.
- Для синуса и косинуса разбить решения на два.
- 3. Подставить в неравенство вместо неизвестного (x) найденные решения и решить его относительно n.
- 4. Учитывая, что n принадлежит Z, найти соответствующие неравенству значения n.
- 5. Подставить полученные

$$\cos x = a, |a| \le 1, [c; d]$$

$$\begin{bmatrix} x = \arccos a + 2\pi k, k \in Z \\ x = -\arccos a + 2\pi k, k \in Z \end{bmatrix}$$

$$c \le \arccos a + 2\pi k \le d$$

$$c \le -\arccos a + 2\pi k \le d$$
T.к. $k \in Z$, To $k_1 = ...; x_1 = ...$

$$k_2 = ...; x_2 = ...$$

$$\sin x = a, |a| \le 1, [c;d]$$

$$\begin{bmatrix} x = \arcsin a + 2\pi k, k \in Z \\ x = \pi - \arcsin a + 2\pi k, k \in Z \end{bmatrix}$$

$$c \le \arcsin a + 2\pi k \le d$$

$$c \le \pi - \arcsin a + 2\pi k \le d$$

$$T.K. \ k \in Z, \quad \text{To} \ k_1 = ...; \ x_1 = ...$$

$$k_2 = ...; \ x_2 = ...$$

теометрический спосоо

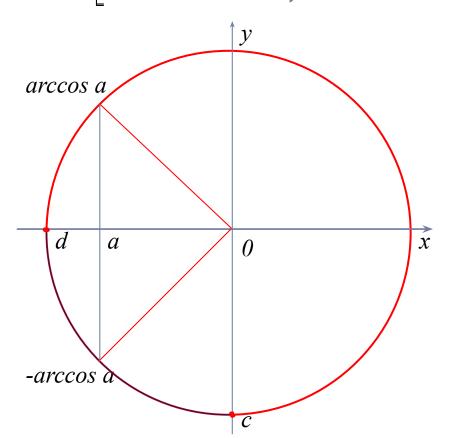
Изображение корней на тригонометрической окружности с последующим отбором с учетом имеющихся ограничений

На окружности

- Решить уравнение.
- 2. Обвести дугу, соответствующую данному отрезку на окружности.
- 3. Разделить виды решений для синуса и косинуса.
- Нанести решения уравнения на окружность.
- 5. Выбрать решения, попавшие на обведенную дугу.

$$\cos x = a, |a| \le 1, [c; d]$$

$$\begin{bmatrix} x = \arccos a + 2\pi k, k \in \mathbb{Z} \\ x = -\arccos a + 2\pi k, k \in \mathbb{Z} \end{bmatrix}$$



Геометрический способ

Изображение корней на графике с последующим отбором с учетом имеющихся ограничений

На графике

- Решить уравнение.
- Построить график данной функции, прямую y = a, на оси x отметить данный отрезок.
- Найти точки пересечения графиков.
- 4. Выбрать решоша

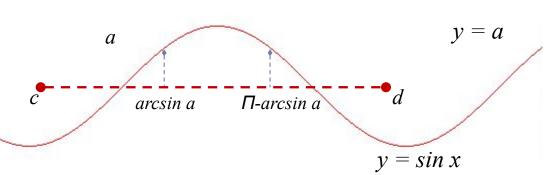
принадлежа

данному от

$$\sin x = a, |a| \le 1, [c; d]$$

$$\begin{bmatrix} x = \arcsin a + 2\pi k, k \in \mathbb{Z} \\ x = \pi - \arcsin a + 2\pi k, k \in \mathbb{Z} \end{bmatrix}$$

 $\uparrow \mathcal{V}$



Ответы

_			The North		
1	1) $\frac{\pi}{2}$ + π k; x= $(-1)^k \frac{\pi}{6}$ + π k	9	1) $\frac{\pi}{2} + \pi k$;	17	1) $-\frac{\pi}{4} + \pi k$; $\pm \frac{\pi}{3} + 2\pi k$
	2) $\frac{5\pi}{2}$; $\frac{7\pi}{2}$; $\frac{17\pi}{6}$ 1) $\pm \frac{2\pi}{3} + 2\pi k$		2) $\frac{\pi}{2}$; $-\frac{\pi}{2}$; $\frac{3\pi}{2}$; $\frac{5\pi}{2}$;		2) $-\frac{\pi}{4}$; $\frac{3\pi}{4}$; $\frac{7\pi}{4}$; $\frac{\pi}{3}$; $-\frac{\pi}{3}$; $\frac{7\pi}{3}$; $\frac{5\pi}{3}$
2			1) -2+3;		1)- $\frac{\pi}{2}$ + π k;
	2) $\frac{2\pi}{3}$; $-\frac{2\pi}{3}$; $\frac{4\pi}{3}$ 1) $(-1)^k \arcsin{\frac{2}{3}} + \pi k$		2) $-\frac{19\pi}{6}$; $-\frac{23\pi}{6}$; 1) $2\pi\kappa$; $\pm \frac{2\pi}{3} + 2\pi\kappa$		$2)\frac{3\pi}{4};\frac{7\pi}{4}$
3	1) $(-1)^k$ arcsin $\frac{2}{3}$ + π k	11	1) $2\pi\kappa$; $\pm \frac{2\pi}{3} + 2\pi\kappa$		4 4
	$\pm \frac{2\pi}{3} + 2\pi k$		2)0; $\frac{2\pi}{3}$	19	1) $\frac{\pi}{2} + 2\pi \kappa$; $\pm (\pi - \arccos \frac{1}{4}) + 2\pi \kappa$
	2) $\pm \frac{2\pi}{3}$; π - arcsin $\frac{2}{3}$; $\frac{4\pi}{3}$; arcsin $\frac{2}{3}$	12	1) $(-1)^{\kappa} \arcsin \frac{4}{5} + 2\pi \kappa$	100	$2)\frac{\pi}{2};(\pi \pm \arccos\frac{1}{4})$
4	$1)\frac{2\pi k}{3}$		$2)\pi - \arcsin\frac{4}{5}$		
	2# 4#	13	1) $\frac{\pi}{2} + \pi \kappa$; $(-1)^k \frac{\pi}{6} + \pi k$.		1) $-\frac{\pi}{4} + \pi \kappa$; - arctg $\frac{2}{3} + \pi k$
		ž.	2) $\frac{\pi}{2}$; $-\frac{\pi}{2}$; $\frac{\pi}{6}$.		2)- $\frac{9\pi}{4}$; -2 π - arctg $\frac{2}{3}$
0	$1)\frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k.$	14	$(1)\frac{\pi}{2} + \pi k; \pm \frac{\pi}{3} + 2\pi k$	21	1) $\frac{\pi}{2}$ + $2\pi k$; $(-1)^{k+1}\frac{\pi}{4}$ + πk
	$(2)\frac{\pi}{6}; \frac{\pi}{6}.$	8	2)- $\frac{\pi}{2}$; $\frac{\pi}{2}$; $-\frac{\pi}{3}$; $\frac{\pi}{3}$		2) $-\frac{11\pi}{4}$; $\frac{9\pi}{4}$
6	1) $\pm \frac{\pi}{3} + 2\pi k$; $\pm (\pi - \arccos \frac{1}{3}) + 2\pi k$	15	1) πk ; $2\pi k$; $\pm \frac{2\pi}{3}$ + $2\pi k$	22	1) $\frac{\pi}{2}$ + 2 π k; (-1) ^k arcsin0,6+ π k
	2) $3\pi - \arccos \frac{1}{3}; \frac{7\pi}{3}$	10			2) $\frac{2}{\pi}$; π -arcsin0,6
7	1) - $\arcsin \frac{1}{4} + 2\pi k$; $\pi + \arcsin \frac{1}{4} + 2\pi k$;	8	2) 0; π ; 2π ; 3π ; $\frac{8\pi}{3}$; $\frac{4\pi}{3}$		£.
	$\pi + 2\pi k$			23	1) $\arctan(1+\sqrt{2}) + \pi k$; $\arctan(\sqrt{2}-1) + \pi k$
	2) 3π ; $3\pi + \arcsin{\frac{1}{4}}$.	16	1) πk ; $-\frac{\pi}{4} + \pi k$	63	2) $arctg(1+\sqrt{2})$; - $arctg(\sqrt{2}-1)$.
8	1) $-\arctan g_{\frac{3}{2}}^{3} + \pi k; \frac{\pi}{4} + \pi k$		2) -2π ; $-\pi$; 0; π ; 2π ; $-\frac{3\pi}{4}$; $-\frac{\pi}{4}$;	24	1) - $\frac{\pi}{4}$ + π k
	2) π -arctg $\frac{3}{2}$; $\frac{5}{4}\pi$.		$-\frac{5\pi}{4}$; $-\frac{\pi}{4}$; $\frac{5\pi}{4}$; $\frac{7\pi}{4}$.		2) $-\frac{\pi}{4}$; $\frac{3\pi}{4}$

Пример 3. Найти все корни уравнения

которые удовлетворяют условию

Решение.

$$10\sin^{2} x = -\cos 2x + 3;$$

$$10\sin^{2} x = 2\sin^{2} x - 1 + 3,$$

$$8\sin^{2} x = 2;$$

$$\sin^{2} x = \frac{1}{4};$$

$$\sin x = \pm \frac{1}{2};$$

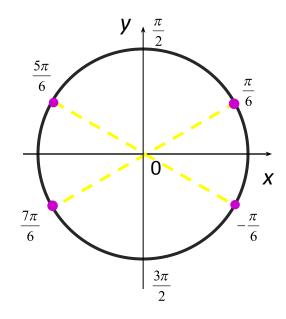
$$x = (-1)^{k} \cdot \frac{\pi}{6} + \pi k, k \in \mathbb{Z},$$

$$x = (-1)^{m} \cdot (-\frac{\pi}{6}) + \pi m, m \in \mathbb{Z};$$

С помощью числовой окружности получим:

получим:
$$x = \pm \frac{\pi}{6} + \pi n, n \in Z;$$

$$10\cos^{2}(\frac{\pi}{2} + x) = \sin(\frac{7\pi}{2} + 2x) + 3,$$
$$x \in \left[-\frac{2\pi}{3}; \frac{19\pi}{12}\right].$$



Выберем корни, удовлетворяющие условию

задачи. серии:

$$-\frac{2\pi}{3} \le \frac{\pi}{6} + \pi n \le \frac{19\pi}{12}, n \in \mathbb{Z};$$

$$-8\pi \le 2\pi + 12\pi n \le 19\pi, n \in \mathbb{Z};$$

 $-10 \le 12n \le 17, n \in \mathbb{Z}$.

Следовательно n=0 или n=1, то есть

$$x = \frac{\pi}{6},$$

$$x = \frac{7\pi}{6}.$$

Из второй серии:

$$-\frac{2\pi}{3} \le -\frac{\pi}{6} + \pi n \le \frac{19\pi}{12}, n \in \mathbb{Z};$$

$$-8\pi \le -2\pi + 12\pi n \le 19\pi, n \in \mathbb{Z};$$

 $-6 \le 12n \le 21, n \in Z.$ Следовательно n=0 или n=1, то

$$\begin{bmatrix} x = -\frac{\pi}{6}, \\ x = \frac{5\pi}{6}. \end{bmatrix}$$

Ombem:
$$\{\pm \frac{\pi}{6}; \frac{5\pi}{6}; \frac{7\pi}{6}\}$$
.

Самый лучший способ для достижения правильного и быстрого результата это тот, который лучше всего **VCBOCH** конкретным учеником.