Nature of Science

The

International System of Units

M/h.. Nn we need to be able to

Estimation

Estimation is using your knowledge of something similar in size or amount to determine the size of the new object.

Helps to make a rough measurement of an object.
Usefully when you are in a hurry and exact numbers are not
 required.

Precision and Accuracy

Precision is a description of how close measurements are to each other.

Accuracy is
comparing your measurement to the actual or accepted value.

Why use the SI

In the U.S. we use the English or Standard| System, most of the rest of the world uses the Metric or SI System.
The SI (International System of Units) system is the form of measurement typically used by scientists.

Basic Types of Measurement

 ngth: measures distance between obje tume: measures the amount of space something takes upmeasures the amount of matter an object
Other Types of measurement include:

\checkmark density
\checkmark PH

English system you have ember so many numbers

12 inches in a foot 3 feet in a yard 5,280 feet in a mile 16 ounces in a pound 4 quarts to a gallon
ie SI System you only have to ember one number.

The SI System is based on the number 10.

System uses the following prefixes

Kilo	1000
Hecto	100
Deca	10
UNIT	1
Deci	$1 / 10$
Centi	$1 / 100$
Milli	$1 / 1000$

This system works with any SI measurement.

The UNIT becomes whichever type of measurement you are making. (mass, volume, or length)
It is the same system regardless if you are measuring length, mass volume.

It works for all types of measurement. If your measuring . . .
centigram

The first part of the term indicates the amount, the second part indicates the type of measurement.

does converting units

Unlike the English system converting in the SI System is very easy.

For Example in the English system if you wanted to know how many inches in 2 miles what would you do?

1. Take the number of miles (2).
2. Multiply it by the number of feet in a mile $(5,280)$.
3. Multiply that by the number of inches in a foot (12).

ANSWER: 126,720 inches in 2 miles

system is much easier.

For example in the metric system if you wanted to know how many centimeters were in 3 meters, what would you do?

Find the unit you have (meters).
Find the unit you are changing to (centimeters).
Count the number of units in-between (2)
Move the decimal point that many spaces
in the same direction you counted (right).

3 meters $=300$ centimeters

More Conversions . . .

$2,321.0$ millimeters to $\quad=2.321$ meters
521.0 grams to hectograms $=5.21$ hectograms
8.5 kiloliters to centiliters $=\mathbf{8 , 5 0 0 , 0 0 0}$ centiliters

NOTE: The digits aren't changing, the position of the decimal is. In the English system the whole number changes.

Things to Remember

- All measurements need a number and a unit!
- Basic units of Measurement (meter, liter, gram)
- How to convert metric units
- Vocabulary words

Nature of Science

The

International System of Units

asic Types of Measuremen

 gth: measures distance between obj volume: measures the amount of space something takes uplass: measures the amount of matter an object
In SI the basic units are Mass is the gram
\checkmark Volume is the liter (liquid) $\boldsymbol{\checkmark}$ Temperature is Celsius

Metric Measurement: Length

Length is the distance between two points.
\checkmark Does not matter if it is width, height, depth, etc. All are length measurements.
\checkmark The basic unit of length in the SI System is the meter.
\checkmark The meter is about the length of the English yard (3 feet).
\checkmark Area is a variation of a length measurement. - Area is length x width.

- Expressed in units ${ }^{2}\left(\mathrm{~m}^{2}, \mathrm{~cm}^{2}, \mathrm{~mm}^{2}\right.$ etc.)

Metric Measurement: Mass

Mass is a measurement of the amount of matter in an object.
\checkmark Basic unit of mass is the gram. There are 454 grams in one pound.
\checkmark Weight and mass are related, but NOT the same.

- Weight is the pull of gravity on an object

■ The greater the mass, the larger the pull of gravity.

Metric Measurement: Volume

Volume is a measurement of the amount of space something takes up.
\checkmark The basic unit used for volume is the liter. This unit is used for the volumes of liquids.
\checkmark Volumes of solids are figured using this formula:

$$
\begin{aligned}
& \text { (L)ength } \times(\text { W)idth } \times(H) \text { eight } \\
& \mathrm{cm} \times \mathrm{cm} \times \mathrm{cm}=\mathrm{cm}^{3}
\end{aligned}
$$

\checkmark Objects without a definite length, width or height (a rock for example), can use water displacement to determine volume.

$$
\text { NOTE: } 1 \mathrm{ml}=1 \mathrm{~cm}^{3}
$$

Metric Measurement: Temperature

Temperature is a measure of the kinetic energy of the atoms in an object.
\checkmark Temperature is measured with a thermometer and measured in Celsius or Kelvin.
\checkmark Celsius ranges from 0 (freezing) to 100 (boiling).
\checkmark The Kelvin scale begins at absolute zero, or 0 K . At 0 Kelvin no more heat can be removed from an object.

- To convert to Kelvin you add 273 degrees to the Celsius reading.
口 Freezing in Kelvin is 273 K , boiling is 373 K .

Nature of Science

The

International System of Units

Density is how much matter is in somethinghifrassi; ; eorapared to theght
 lead to equal one kilogram! The formula for density is:

Mass (gratins)dere by Volume $\left(\mathrm{cm}^{3}\right)$ So the unit for density is cm^{3}

- Every substance has adensity, and that density always remains the same. Which one takes up more space (volume)?
a Density can be used to figure out what an the unknown substance is. feathers.
\square The density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$

