
Ю.А. КУЗНЕЦОВ

Главные типы магматических формаций

for 2/3hm

Под магматической формацией понимается устойчивая ассоциация изверженных горных пород, которая, закономерно повторяясь в разных регионах, всюду формируется в сходной геологической обстановке

Петрография и петрология магматических, метаморфических и метасоматических горных пород. Учебник. Под ред. В.С.Попова и О.А. Богатикова. М.: Логос, 2001, 768 с.

- В учении о геологических формациях намечаются две последовательно решаемые группы задач.
- Первая предусматривает выделение
 формаций, их изучение, типизацию,
 установление коррелятивных связей между
 типами формаций и тектоническими
 структурами, палеогеографическими
 обстановками, полезными ископаемыми.
- Вторая группа задач сводится к осуществлению разных видов районирования и **прогнозной оценки** территорий.

группировка магматических формаций, в соответствии со схемой ВСЕГЕИ

- семейство ультрамафических формаций
- ф группа ультрамафитовых формаций
- ф группа щелочно-ультрамафитовых формаций
- - семейство мафических формаций
- ф группа базальтовых и габбровых формаций
- ф группа щелочно-базальтовых и щелочногаббровых формаций
- семейство мафическо-салических формаций
- группа андезитовых и гранодиоритовых формаций
- - семейство салических формаций
- 🔷 группа риолитовых и гранитовых формаций
- ф группа фонолитовых и нефелинсиенитовых формаций.

Самайство упьтрамафических

формаций			
Группа формаций	эффузивные и жильные	интрузивные	
	Коматиитовая	Дунит-перидотитова	
	Меймечитовая	Пироксенит-перидотитс	
Ультрамафи		Пушит пирокоонит	

товых

Карбонатит-

нефелинитовая

Щелочноультрамафи Лампроитовая товых

ая

овая Дунит-пироксенит-

габбровая

Перидотит-пироксенитноритовая Щелочно-

ультрамафитовая с карбонатитами

• С массивами дунит-перидотитовой формации ассоцируют рудные формации: хромитовая с платиноидами (Кемпирсайское месторождение, Урал), тальковая (Козьмодемьяновское, Южный Урал), хризотил-асбестовая (Баженовское, Средний Урал), вермикулитовая (Каратас, Мугоджары), силикатно-никелевая (Халиловское, Урал) и другие. В зонах наложенных гидротермальнометасоматических изменений массивы рассматриваемой формации вмещают месторождения золота, нефрита, жадеита и

• С расслоенными перидотит-пироксенитноритовыми массивами связаны месторождения хромитовой (Бушвельдский массив), платиноидносульфидновкрапленной (Риф Меренского, Бушвельдский массив), сульфидной медноникелевой с платиноидами (Мончегорск и др.), титаномагнетитовой с ванадием (Бушвельдский массив) рудных формаций, хризотил-асбеста и т.д.

С породами щелочно-ультраосновной с карбонатитами формации связана обширная группа рудных формаций, включая экзогенную вермикулитовую. С дунитами ассоциируют иридиевоплатиновая (Кондерский массив) и иридиевоосмиеовая (Гулинский массив) россыпная формация, с пироксенитами – перовскит-титаномагнетитовая (Ковдорский массив), с ийолитами – флогопитовая, апатит-магнетитовая, апатит-фенитовая (Ковдорский, Вуориярвинский, Палаборский, Маганский массивы), с камафоритами и карбонатитами – магнетитапатитовая, флогопитовая, апатит-пирохлоровая (Араша, Мрима), апатит-гатчетолитовая, борнитхалькопиритовая с палладием (Палабора), монацитовая и бастнезитовая (Вигу, Нкомбва), флюоритовая (Большетайгинский массив), брукитовая (массив Магнет-Ков) и другие рудные формации.

семеиство мафических

chantaillaid				
Группа форма ций	эффузивные и жильные	интрузивные		
Маф итов ых	Натриевых базальтов (спилит-диабазовая)	Анортозитовая Сиенит-габбровая Габбро-анортозитовая Габбро-верлитовая		
	Натриевых базальтов-риолитов (спилит-кератофировая)			
	Базальт-андезит-риолитовая			
	Андезит-базальтовая			
	Калиевых базальтов-трахитов			
	Риолит-лейкобазальтовая			
	Трахибазальтовая			
	Трахибазальт-трахиандезит-трахиорилитовая			
	Базальт-долеритовая (трапповая)			
	Габбро-диабазовая			
Щело чно- мафи товых	Щелочных базальтоидов и фонолитов	Щелочных габброидов и нефелиновых сиенитов		
	Щелочных базальтоидов и лейцитофиров	Щелочных габброидов и псевдолейцит-нефелиновых		

сиенитов

• С базальт-долеритовыми (трапповыми) комплексами Сибирской и в меньшей степени Восточно-Европейской платформ связаны крупные месторождения: магматические – меди, никеля, платиноидов, титаномагнетита, гидротермальные меди и никеля, железа (магнетит), исландского шпата, графита и т.д.

Классификация мафическосалических формаций

Группа формаций	вулканические	плутонические
		Тоналит-
	Базальт- андезитовая Андезитовая Трахиандезитовая	плагиогранит-
Δ.		гранодиоритовая
Андезитовых и		Диорит-
гранодиоритовых		гранодиоритовая
		Монцонит-
		сиенитовая

• С комплексами, относимыми к тоналитплагиогранит-гранодиоритовой формации, связана достаточно разнообразная промышленная минерализация: в первую очередь золото- и железорудная, а также меднорудная, полиметаллическая, висмутсеребряная. Золоторудная минерализация наиболее характерна для тоналитплагиогранитовых, а железорудная – для диорит-гранодиоритовых массивов. С наиболее щелочными (тоналитграносиенитовыми) комплексами формации ассоциирует медно-молибденовая минерализация, реже шеелитовые скарны и кварц-шеелитовое оруденение.

Классификация салических

формани	

Групп а форм аций	вулканичес кие	плутонические
Риоли товых и гранит овых	Натриевых риолитов	Мигматит-плагиогранитовая и мигматит-гранитовая
		Гранитовая
	Дацит- риолитовая	Формация гранитов-рапакиви
		Лейкогранит-аляскитовая
	Риолитовая	Субщелочнолейкогранитовая (фтор-литиевых гранитов)
	Трахилипари	Щелочногранитовая
	товая	Гранит-граносиенитовая

Классификация салических

формаций		
Груп па фор маци й	вулканичес кие	плутонические
нефе лин- сиен итов ых		Миаскитовых нефеливых сиенитов с карбонатитами (натриевая)
	Трахит- фонолитовая	Сиенитов-миаскитовых нефелиновых сиенитов (ильмено-вишневогорского типа)
		Сиенитов, агпаитовых и миаскитовых нефелиновых сиенитов (натриевая)
		Агпаитовых нефелиновых сиенитов (натриевая)
	Лейцит- фонолитовая (калиевая)	Псевдолейцитовых сиенитов (калиевая)

Лейкогранит-аляскитовая формация Редкометальнопегматитоносные массивы сопровождаются жильными полями из даек мелкозернистых и письменных гранитов, среди которых есть пегматитовые тела с бериллом, часто с попутным колумбитомтанталитом, иногда с крупнолистоватым мусковитом (калиевые граниты и пегматиты Мадагаскара, слюдяно-берилловые пегматиты Индии и др.). Хрусталепегматитоносные массивы заключают значительное количество внутригранитных пегматитов, в том числе перспективных на горный хрусталь, ограночный топаз, оптический флюорит и др. (Коростеньский плутон Украины, Зерендинско-Балкашинский, Бектауатинский, Акжайляуский, Кентский и другие Казахстана, Адун-Чолонский Забайкалья, Горихинский Монголии и др.). Грейзеноносные массивы сопровождаются кварцевожильногрейзеновыми месторождениями и рудопроявлениями W, Mo, Sn, Bi (Акчатауский и Караобинский массивы Казахстана, Айбенштокский Рудных гор, Санта-Комба в Испании, массивы Великого оловянного пояса Бирмы, Таиланда, Индонезии и др.). Альбититогрейзеноносные массивы сопровождаются альбитово-грейзеновыми месторождениями касситерита и колумбита, нередко и кварцевожильно-грейзеновыми месторождениями касситерита, вольфрамита и др. (массивы орлиногорского комплекса в Северном Казахстане, лейкогранитовые мезозойские массивы Нигерии). Мелкие месторождения и рудопроявления редких металлов или горного хрусталя.

• Массивы агпаитовых нефелиновых сиенитов привлекают особое внимание тем, что практически каждый из них обладает уникальными месторождениями редкометальных руд: Ловозеро – лопаритовое и эвдиалитовое оруденение, Посос-де-Кальдас – циркон-бадделеитовые жилы с уран-ториевой минерализацией, Пилансберг – редкоземельноурановое (бритолитовое) и пирохлоровое оруденение, Илимауссак – стенструпиновое редкоземельно-урановое и эвдиалитовое оруденение, Хибины – апатитовые и глиноземные руды с редкими землями, стронцием и др. Нефелиновые сиениты и WOHOUNTH NCUOUPS/NOTCO KAK HEHHOE CTEKOUPHOE

Эволюция магматических формаций в истории Земли

- В истории Земли принято выделять четыре стадии тектономагматической эволюции:
 1) «лунную» (стадию первичной коры) более 3,8 млрд лет,
- 2) нуклеарную 3,8-2,5 млрд лет,
- 3) кратонную 2,5-1,5 млрд лет,
- 4) континентально-океаническую 1,5 млрд лет доныне.
- (Континентально-океаническая стадия подразделяется на континентальную (1,5-0,25 млрд лет) и континентально-океаническую (0.25 млрд-0) подстадии)

«Лунная» стадия

• «Лунная» стадия охватывает период от образования Земли в результате аккреции протопланетного вещества до момента прекращения бомбардировки поверхности крупными метеоритами и расшифровывается с трудом. Доказательствами проявления магматизма в эту стадию являются наличие магматических пород среди самых древних образований Земли, интенсивный магматизм Луны, а также вывод о дифференциации к этому времени Земли на ядро, мантию и кору. Тип магматизма определяется как примитивный

Нуклеарная стадия

Нуклеарная стадия завершается на рубеже 2,5 млрд лет, когда началось интенсивное образование протоконтинентов. Типичен ареальный площадной характер магматизма и формирование изверженных пород нормальной щелочности - толеитовой и известково-щелочной серий с максимальным развитием коматиитовых формаций. Широко представлены плутонические ультрамафиты и кислые породы гранитогнейсовой («серые гнейсы»), мигматитовой и чарнокитовой групп формаций. Формации нуклеарной стадии связаны с зеленокаменными поясами и щитами древних платформ. В зеленокаменных поясах Северо-Американской и Африканской платформ появляются щелочные граниты. Возникают в ходе этой стадии и крупные дифференцированные интрузии базитов (Великая дайка, Стиллуотер и др.). В конце стадии (2,6-2,5 млрд лет) образуются автономные массивы габбро-анортозитовой (анортозит-монцонитовой) формации.

• Нуклеарная стадия сравнительно бедна эндогенными месторождениями, хотя в зеленокаменных поясах они довольно многочисленны. Это небольшие магматогенные титаномагнетитовые месторождения в анортозитах Гренландии, Шотландии, Южной Африки, Йндии, сульфидные медно-никелевые месторождения Канады, Зимбабве, Австралии в связи с коматиитовой формацией; древнейшие цинковомедные и медно-полиметаллические колчеданные месторождения пояса Абитиби в Канаде, Биг Стабби в Австралии; золоторудные месторождения в сульфидных залежах Барнет в Канаде, в штокверках и жилах Барбертон в Африке, Колар в Индии и др. К более позднему времени относится образование пегматитовых месторождений лития, бериллия, тантала, олова, мусковита (Канада, Зимбабве, Индия, Мадагаскар), керамических пегматитов Карелии, хромитовых месторождений (Великая дайка), железорудных скарнов Алданского щита.

Кратонная стадия

Кратонная стадия характеризуется объединением сформированных в предыдущую стадию протоконтинентальных ядер в стабилизированные кратоны с типичными платформенными чехлами и зонами внутрикратонной активизации. Массовое образование формаций, слагающих сиалическую часть земной коры. К концу стадии формируется до 90 % существующих ныне сиалических пород. Продолжается образование формаций нуклеарной стадии при резком снижении роли коматиитов и отчетливом увеличении удельного веса таких формаций, как гранитогнейсовая, мигматитовая, чарнокитовая, анортозитовая, гранитов-рапакиви, повышении роли калиевых магматитов по сравнению с натриевыми и заметном росте многообразия магматических формаций. Впервые появляются траппы базальт-долеритовой формации, в конце стадии – ультраосновные щелочные породы с карбонатитами, кимберлиты, альпинотипные гипербазиты и офиолиты, фтор-литиевые граниты субщелочнолейкогранитовой формации. Значительна роль дифференцированных интрузий перидотит-пироксенитноритовой формации

• В кратонную стадию сформировались магматогенные месторождения хромитов и платины (Бушвельд), апатит-магнетитовых руд типа Кируна в Швеции; колчеданов Австралии (Брокен-Хилл, Маунт Айза), Швеции (Болиден), Северной Америки, Карелии; мусковитовых и мусковит-редкометальных пегматитов Беломорья и Мамы; гидротермальных месторождений серебра (Кобальт в Канаде) и золота (Хоумстейк в США); скарновых и гидротермальных месторождений олова и вольфрама в Карелии и Финляндии; редкометальных приразломных метасоматитов с ураном, танталом, ниобием, бериллием; сульфидных медно-никелевых руд Седбери. К этой стадии приурочен максимум эндогенного сидерофильного, золотого, уранового, никелевого и медного оруденения.

Континентальная подстадия

Континентальная подстадия – охватывает промежуток времени от начала рифея до начала мезозоя, когда континентальная земная кора достигает наивысшей зрелости и характеризуется формированием складчатых поясов и зон тектономагматической активизации. Происходит наращивание и перераспределение вещества сиалической коры, а плавление мантийного субстрата опускается на все более глубокие уровни, что приводит к прогрессирующей генерации и дифференциации субщелочных и щелочных расплавов от ультраосновных и основных до фонолитовых и трахитовых. Наиболее типичной особенностью континентальной подстадии является многообразие связанных с ней магматических формаций. Широко представлены такие формации как дунитгарцбургитовая, спилитовая, тоналит-плагиогранитовая, характерные для регионов со зрелой корой формации известково-щелочной серии (базальт-липаритовая, андезитовая, гранитовая, лейкогранит-аляскитовая и др.). Образование глубинных разломов в жесткой литосфере способствует выведению этих магм к поверхности с появлением формаций **щелочных, щелочно-базитовых, щелочно**ультрамафитовых пород и кимберлитов.

Континентально-океаническая подстадия

Континентально-океаническая подстадия ознаменована распадом Гондваны, образованием современных континентов, Атлантического и Индийского океанов и отличается отчетливо дифференцированным характером магматизма, проявляющимся в континентальных и океанических обстановках. В океанических сегментах литосферы Земли преобладают формации толеитовой серии, распространены известково-щелочные островодужные формации и щелочнобазальтовые формации океанических островов. От ранних фаз магматизма к поздним в океанических сегментах наблюдается нарастание дифференцированности и щелочности базальтовых серий при снижении их кремнекислотности. На континентах развиты формации: базальт-андезитовая, плагиогранитовая, базальт-липаритовая, андезитовая, гранитовая, лейкогранит-аляскитовая, субщелочнолейкогранитовая, **щелочно-ультрамафитовая**, кимберлитовая и др. По количеству формаций, разнообразию их пород континентальноокеаническая подстадия превосходит все предшествующие.

Континентально-океаническая подстадия

- По представлениям акад. В.И.Смирнова, континентально-океаническая стадия включает
- гренвильский (1500-1000 млн лет),
- байкальский (1000-600 млн лет),
- каледонский (600-400 млн лет),
- герцинский (400-250 млн лет),
- киммерийский (250-100 млн лет)
- альпийский (моложе 100 млн лет) металлогенические этапы.

гренвильский этап

• Во время гренвильского этапа образовались колчеданные и колчеданно-полиметаллические месторождения (Сулливан в Канаде), золоторудные месторождения Южной Африки, урановые Большого Медвежьего озера в Канаде, серебро-кобальтовые Онтарио, медные и полиметаллические Восточной Сибири, скарновые железорудные месторождения Норвегии, редкоземельные карбонатиты Маунтин-Пасс в США и др.

Байкальский этап

• Во время байкальского этапа формировались магматические титаномагнетитовые месторождения Норвегии, Канады, Урала (Кусинское), колчеданные Северной Америки и Сибири (Холоднинское, Горевское), редкометальные пегматиты и грейзены Египта, Уганды, Индии, Австралии.

Каледонский этап

• В каледонский этап магматогенные месторождения титаномагнетитов и хромитов проявлены слабо, но известны железорудные скарновые и широко развиты колчеданные (Фосен в Норвегии, Рио Тинто в Испании, Озерное в Прибайкалье и др.). Второстепенное значение имеют редкометальные граниты Алтае-Саянской области, медно-порфировые (Казахстан), золоторудные и полиметаллические (Англия) месторождения, а также карбонатитовые и пегматитовые (Норвегия, $K^{3}H^{3}H^{3}I$

Герцинский этап

• Герцинский этап известен хромитовыми и титаномагнетитовыми магматогенными (Урал), медно-колчеданными и полиметаллическими (Урал, Рудный Алтай) месторождениями, многочисленными и разнообразными месторождениями олова, вольфрама, молибдена, меди, золота, редких элементов, оптического флюорита и пьезокварца в пегматитах, редкометальных гранитах, грейзенах, скарнах и других метасоматитах лейкогранит-аляскитовой, субщелочнолейкогранитовой, щелочногранитовой и других щелочных формаций, месторождениями медноникелевых руд с платиноидами, алмазов и др.

Киммерийский этап

• В киммерийский металлогенический период преобладают месторождения цветных, редких, благородных и радиоактивных металлов Забайкалья, Якутии, Чукотки, Приморья и др., в том числе гигантские редкоземельные месторождения в Китае (Баян-Обо) и Монголии.

Альпийский этап

• Альпийский период отличается большим разнообразием эндогенных полезных ископаемых, охватывающих практически все известные их типы. Среди наиболее масштабных: хромитовые месторождения дунит-гарцбургитовой формации (Филиппины), медно-колчеданные (впадина Красного моря, Атлантика, Кипр), сульфидные месторождения типа Куроко дацит-липаритовой и андезитовой формаций (Япония), золотосеребряные андезитовой формации (Япония, Филиппины, Карпаты, Балканы), медно-порфировые месторождения (с молибденом, золотом), связанные с известково-щелочными вулканоплутоническими поясами (Чили, США, Филиппины, Индонезия), редкометальные, урановые и флюоритовые месторождения, ассоциирующие с онгориолитами и субщелочными лейкогранитами (Калифорния, Невада, Колорадо, Юта, Мексика).

- Сравнительный анализ магматизма различных стадий развития Земли позволяет сделать следующие выводы:
- 1. Общая эволюция магматизма в истории Земли направлена в сторону последовательного расширения спектра магматических формаций и составов магматических пород. В процессе эволюции к древнейшим ассоциациям магматических пород толеитовой и известковощелочной серий последовательно подключаются все более многочисленные формации субщелочных и щелочных пород.
- 2. Площадной и относительно непрерывный во времени магматизм ранних стадий сменяется пульсирующим дискретным магматизмом линейного характера поздних стадий.

- 3. От ранних стадий к поздним сокращается, вплоть до исчезновения, распространение формаций коматиитов, чарнокитов, анортозитов, гранито-гнейсов и мигматитов.
- 4. На поздних стадиях уменьшается роль толеитового магматизма за счет увеличения распространенности формаций известковощелочной серии.
- 5. Плагиограниты ранних стадий сменяются все более калиевыми гранитами поздних стадий.

- 6. Формации щелочных пород, фторлитиевых гранитов и онгонитов получают широкое развитие (а некоторые появляются) только начиная с кратонной стадии.
- 7. Интенсивность эндогенного рудообразования повышается от практически безрудной лунной стадии через нуклеарную с нарастанием сидерофильного (Fe, Cr, Mn, Ti, V, Pt) оруденения к кратонной стадии с сидерофильной минерализацией и, наконец, к континентально-океанической стадии с литофильно-халькофильным (W, Sn, Mo, Co, Sb, Ag, Hg и др.) оруденением.

• Эволюция эндогенного оруденения вполне согласуется с эволюцией магматизма в геологической истории. Сидерофильный характер оруденения кратонной стадии связан с широким развитием расслоенных базитовых плутонов и анортозитов, а также дифференцированных базальт-андезитриолитовых ассоциаций. Литофильнохалькофильный профиль оруденения континентально-океанической стадии коррелируется с широким развитием лейкогранит-аляскитовой, субщелочнолейкогранитовой, щелочных формаций, а также значительным распространением расслоенных базитовых плутонов и базальт-андезит-риолитовых

• В целом ведущей тенденцией эволюции магматизма в истории нашей планеты является смена примитивного коматиитбазитового магматизма глубоко дифференцированным магматизмом с последовательным расширением спектра изверженных пород и возрастанием роли известково-щелочных и щелочных формаций.