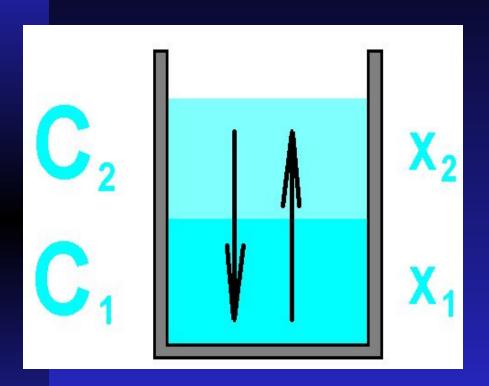
Теория растворов

Диффузия в растворах Коллигативные свойства растворов


План лекции

- Общие понятия
- Свойства разбавленных растворов неэлектролитов
- Закон Вант-Гоффа для осмотического давления
- Закон Рауля
- Закон Нернста

Реальный раствор Идеальный раствор

- Раствор, в котором нет химического взаимодействия между растворенным веществом и растворителем
- Не происходит изменение объема $(\Delta V = 0)$
- Отсутствуют тепловые явления ($\Delta H = 0$)
- Движущая сила изменение (прирост) энтропии ($\Delta S > 0$)

Диффузия

• Самопроизвольный перенос вещества из области с большей концентрацией в область с меньшей концентрацией, в результате которого устанавливается равновесное состояние системы

Выравнивание концентраций происходит вследствие беспорядочного теплового движения молекул

Диффузия – процесс двусторонний

Скорость диффузии

 Измеряется количеством вещества, перенесенного в единицу времени через единицу площади.
 Пропорциональна площади переноса и градиенту концентрации вещества

Уравнение Фика:

Коэффициент диффузии (Д)

 Определяет собой количество вещества, продиффундировавшего через единицу поверхности за единицу времени при градиенте концентрации равном единице

Для шарообразных частиц:

```
RT 1

\Pi = \dots \cdot \dots

    N_{\Delta} 6\pi \eta r
R — универсальная газовая постоянная = 8,31
   Дж/моль · К
Т – абсолютная температура, К
N_{\Lambda} – число Авогадро = 6,02 10<sup>23</sup> моль<sup>-1</sup>
\eta — вязкость растворителя, H \cdot c/m^2
r – радиус частицы, м
```

Анализ уравнения

Величина диффузии зависит:

- От площади переноса
- От градиента концентрации
- От расстояния диффузии
- От температуры
- От формы и размера частиц
- От вязкости растворителя

Основываясь на уравнении Фика, экспериментально определяют число Авогадро и размеры молекул

Значение диффузии для биологических процессов

- Всасывание питательных веществ из просвета кишечника в кровь
- Поступление питательных веществ из крови в ткани
- Выделение продуктов обмена веществ из тканей через почки, легкие, кишечник
- Распределение лекарственных и ядовитых веществ, поступающих извне, в организме

 Диффузия в живых организмах регулируется функциональным состоянием тканей и зависит от их физико-химического строения
 Диффузия против градиента концентрации

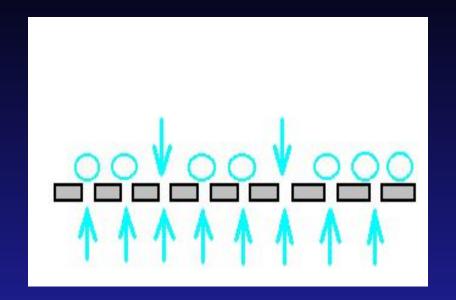
Виды диффузии в организме

Диффузия через клеточную мембрану:

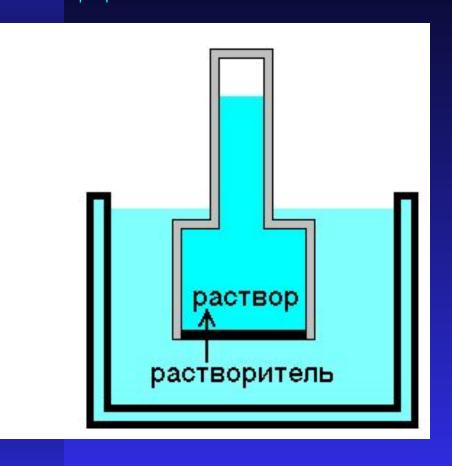
- Пассивная ей подвергаются низкомолекулярные вещества, растворимые в клеточной мембране
- Облегченная вещества образуют промежуточные комплексы с интегральными белками
- Активный транспорт (активная диффузия) происходит с затратой энергии

Работа К/Nа насоса

Коллигативные свойства разбавленных растворов неэлектролитов


- Осмотическое давление
- Понижение давления насыщенного пара
- Понижение температуры замерзания
- Повышение температуры кипения
- Эти свойства растворов зависят только от количества частиц растворенного вещества

Полупроницаемая мембрана


- Способна пропускать в большей степени молекулы растворителя, чем молекулы растворенного вещества
 - Стенки клеток живых и растительных организмов
 - Стенки кишечника
 - Целлофан
 - Пергамент
 - Пленки из коллодия, желатины

Осмос

Односторонняя самопроизвольная диффузия молекул растворителя через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией вещества

Осмометр и осмотическое давление

Осмотическое давление

 гидростатическое
 давление, которое надо
 приложить к раствору,
 чтобы задержать осмос

 Движущая сила процесса — увеличение S,
 выравнивание
 концентрации

Закон Вант-Гоффа для осмотического давления

 Осмотическое давление разбавленных растворов неэлектролитов равно тому газовому давлению, которое производило бы растворенное вещество, если бы оно в виде газа занимало тот же объем, что и раствор

 $\pi = CRT$

π – осмотическое давление

С – молярная концентрация (моль/л)

R – универсальная газовая постоянная

Т – абсолютная температура, К

Осмотическое давление 1 М раствора при 0°С должно быть равно 22,4 атм Величина осмотического давления зависит от концентрации раствора и от его температуры, но не зависит от природы вещества и растворителя

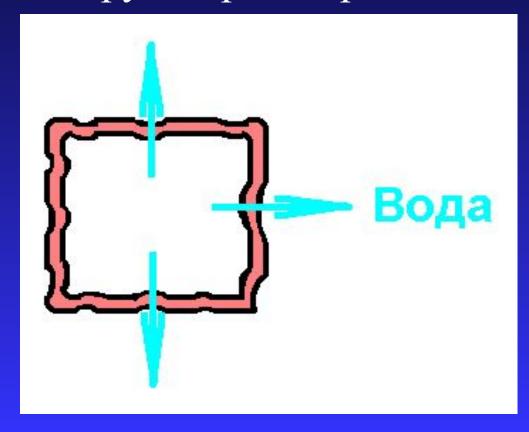
Значение осмоса для биологических систем

- Тургор упругое состояние клеток, обусловленное повышенным осмотическим давлением, способствующее сохранению тканями определенной формы
- Подъем воды в стебле растения
- Рост клетки

Изотонические растворы

- Растворы, обладающие при одинаковых условиях одинаковым осмотическим давлением
- Изотоническими по отношению к плазме крови являются физиологический раствор (9% раствор NaCl) и 5% раствор глюкозы Применение
- Осмомоляльность общее количество осмотически активных частиц в растворе, моль/кг растворителя
- 0,1 моль/кг NaCl и 0,2 моль/кг глюкозы изотоничны. Осмомолялность их равна 0,2 моль/кг

Гипотонические растворы


 Растворы, осмотическое давление которых ниже осмотического давления другого раствора

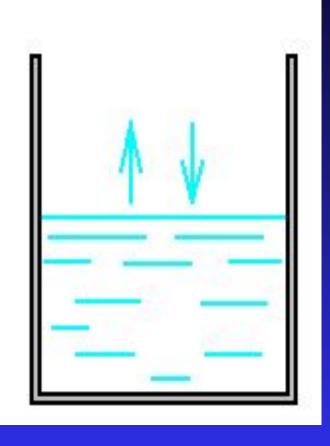
Лизис Гемолиз

Гипертонические растворы

 Растворы с более высоким осмотическим давлением по сравнению с другим раствором

Плазмолиз

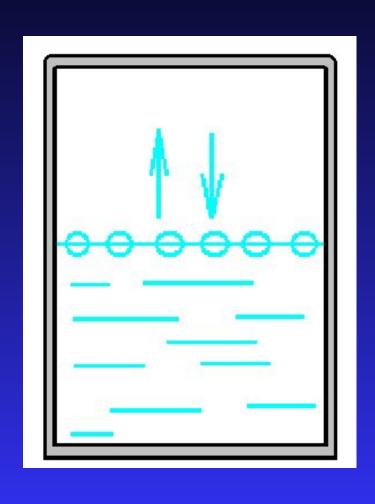
Применение гипертонических растворов


- Наружно: гипертонические повязки (10 20% раствор NaCl)
- Внутривенно: при глаукоме (повышении внутриглазного давления), при отеке легких
- Консервирование продуктов (рассолы, сиропы)
- Слабительные препараты $(MgSO_4 \cdot 7H_2O, Na_2SO_4 \cdot 10H_2O)$
- Лечебное действие морской воды

Онкотическое давление крови

- Белки плазмы крови не проходят через клеточную мембрану, но обладают способностью удерживать определенное количество воды
- Часть осмотического давления крови, обусловленная высокомолекулярными соединениями, входящими в ее состав (в основном белками). Составляет 0,04 атм

При изменении онкотического давления наблюдается нарушение водного обмена («голодные» или «почечные» отеки)


Парпение насыщенного пара

Давление пара, находящегося в равновесии с жидкостью

При давлении насыщенного пара равному атмосферному жидкость закипает

Давление насыщенного пара над раствором

- Испарение жидкости
- Конденсация паров на поверхности

Давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре

Закон Рауля

Относительное понижение давления
насыщенного пара растворителя над раствором
равно молярной доле растворенного вещества

$$P_0 - P$$

$$P_0 = N$$

$$P_0$$

Р₀ – давление пара над чистым растворителем

Р – давление пара над раствором

N – молярная доля растворенного вещества

v – число молей растворенного вещества

 v_0 — число молей растворителя

Следствия из закона Рауля

- Растворы кипят при более высокой температуре, чем чистый растворитель
- Растворы замерзают при более низкой температуре, чем чистый растворитель

Замерзание и кипение растворов

«Морозы соленого рассолу не могут в лед приводить удобно, как одолевают пресную воду» (М.В. Ломоносов)

$$\Delta t_{\text{кипения}} = t_{\text{к p-ра}} - t_{\text{к p-ля}}$$
 $\Delta t_{\text{замерзания}} = t_{\text{з p-ля}} - t_{\text{з p-ра}}$
 $\Delta t_{\text{кипения}} = E \cdot C_{\text{m}}$
 $\Delta t_{\text{замерзания}} = K \cdot C_{\text{m}}$
 $C_{\text{m}} - \text{моляльность раствора}$
 $E - \mathfrak{S}$ булиоскопическая постоянная

К – криоскопическая постоянная

Физический смысл Е и К

- E повышение температуры кипения раствора, содержащего 1 моль вещества в 1000 г растворителя
- К понижение температуры замерзания раствора, содержащего 1 моль вещества в 1000 г растворителя

Величины Е и К зависят только от природы растворителя, но не зависят от природы растворенного вещества

Вещество	К	Е
Вода	0,52	1,86
Бензол	2,57	5,10
Уксусная кислота	3,07	3,90

Методы определения молекулярных масс

- Эбулиометрия применяют в случае недостаточно растворимых соединений
- Криометрия применяют в случае хорошо растворимых веществ
- Осмометрия применяют в случае разбавленных растворов ВМС

Закон Нернста – Шилова

 Вещество, способное растворяться в двух несмешивающихся жидкостях, распределяется между ними так, что отношение его концентраций в этих жидкостях остается постоянным, независимо от общего количества растворенного вещества

$$C_1$$
 — C_2 C_1 и C_2 — молярные концентрации растворенного вещества

Экстракция

 Метод извлечения одного из компонентов раствора с помощью растворителя, не смешивающегося с раствором

Применяют для:

- разделения лекарственных препаратов и их метаболитов
- выделения этих соединений из биологических жидкостей