Курс лекций ОБЩАЯ ГЕОХИМИЯ

Ефремов Сергей Васильевич

Продолжительность курса — 144 часа Лекции — 18 часов Практические занятия — 54 часа Самостоятельная работа — 45 часов Экзамен

Атомная масса

Массы атомов чрезвычайно малы (10^{-27} – 10^{-25} кг), поэтому пользуются не их абсолютными значениями \mathbf{m}_{a} , а относительными; они обозначаются \mathbf{A}_{r} , где нижний индекс \mathbf{r} означает «относительный» Относительной массой химического элемента называется отношение массы его атома к 1/12 массы изотопа углерода 12 С, которая принята за атомную единицу массы (а.е.м или AEM.):

1 a.e.m. =
$$\frac{1}{12}$$
m_a(¹²C) = $\frac{1,993 \cdot 10^{-26}}{12}$ = 1,667 · 10⁻²⁷ кг = 1,666 · 10⁻²⁴ г

Относительная атомная масса является одной из главных характеристик химического элемента и приводится в Периодической системе под символом элемента.

Округленные атомные массы наиболее распространенных химических элементов равны 1 (H), 16 (O), 14 (N), 12 (C), 32 (S), 23 (Na), 24 (Mg), 40 (Ca), 27 Fl), 56 (Fe), 35,5 (Cl).

Молекулярная масса

Относительной молекулярной массой вещества называется отношение массы его молекулы к 1/12 массы изотопа ¹²С.

Она обозначается **М**_г и **вычисляется путем сложения атомных масс элементов, входящих в состав вещества с учетом числа их атомов в формуле**, независимо от того, какую структуру имеет вещество: молекулярную или немолекулярную.

Округленные молекулярные массы наиболее распространенных простых и сложных веществ:

$$H_2 (1 + 1 = 2),$$
 $O_2 (16 + 16 = 32),$
 $N_2 (14 + 14 = 28),$
 $H_2O (1 + 1 + 16 = 18),$
 $NH_3 (14 + 3*1 = 17),$
 $CaO (40 + 16 = 56),$
 $MgO (14 + 16 = 40),$

Представление результатов аналитических исследований

В геологии концентрации химических элементов обычно выражают в массовых долях вещества в смеси.

Для описания концентраций в горных породах и рудах обычно используют массовые проценты (процентное содержание компонента в смеси).

Если концентрации элемента в исследуемом веществе очень малы то пользоваться массовыми процентами неудобно. Для их описания используют другие величины:

ppm – (*Pro pro mille*, частей на миллион); **г/т** – количество грамм вещества в тонне материала; **мг/кг** – количество миллиграмм вещества в килограмме материала.

ppb - (Parts per billion, «частей на миллиард»).

Соотношения между единицами измерения концентрации

```
1 ppm = 100/1000\ 000 = 0,0001\ \text{macc}\ \%\ (1*10^{-4}\ \text{macc}\ \%)
1 \text{ ppm} = 1 \text{ r/T} = 1 \text{ Mr/kr}
Перевод в проценты и ррт:
n масс % = n*10000 ppm
n ppm = n/10000 macc \%
1 ppb = 100/10000000000 = 0,00000001 macc % (1*10<sup>-7</sup> macc %)
Перевод ppb в проценты и ppm:
1 ppm = 1000 ppb
1 \text{ macc } \% = 10000000 \text{ ppb}
```

n ppb = n/10000000 macc %

Петрогенные и рассеянные элементы

Любое вещество в твердой оболочке Земли можно описать с помощью 13 химических элементов: O, Si, Ti, Al, Fe, Mg, Mn, Ca, Na, K, P, H. Эти элементы называются петрогенными (составляющие горные породы). Их суммарное содержание в Земле превышает 98 масс %.

Обычно эти элементы представляют в виде оксидов; SiO_2 , TiO_2 , Al_2O_3 , Fe_2O_3 , FeO_1 , MgO_2 , MnO_3 , CaO_4 , Na_2O_3 , K_2O_4 , P^2O_5 , H^2O_4 (кристаллизационная вода), H_2O_4 (потери при прокаливании).

Суммарная концентрация остальных элементов не превышает 1,5 масс %. Эти элементы обычно называются рассеянными (trace elements – следовые элементы в зарубежной литературе).

Расчет молекулярных и атомных количеств вещества

Оксид	Концен- трации	Масса молекулы (Mr)	Молекулярные количества (Mk)	Атомные количества Мк * число атомов
	масс %		масс % / Mr	металла
SiO ₂	59,83	60	99,72	99,72
TIO ₂	0,83	80	1,38	1,38
Al ₂ O ₃	16,23	102	27,05	54,10
Fe ₂ O ₃ *	5,38	160	8,97	17,93
MnO	0,08	71	0,13	0,13
MgO	2,11	40	3,52	3,52
CaO	3,54	56	5,90	5,90
Na ₂ O	2,46	62	4,10	8,20
K ₂ O	4,83	94	8,05	16,10
P ₂ O ₅	0,23	142	0,38	0,77

Пересчет аналитических данных

Элемен т	г/т	ppm = г/т	ppb = 1000*г/т	масс % = г/т/10000
Li	85	85	85000	0,0085
Ве	5,7	5,7	5700	0,00057
В	52	52	52000	0,0052
F	1050	1050	1050000	0,105
V	82	82	82000	0,0082
Cr	36	36	36000	0,0036
Со	11	11	11000	0,0011
Ni	20	20	20000	0,002
Cu	20	20	20000	0,002
Zn	71	71	71000	0,0071
Υ	23	23	23000	0,0023
Sn	5,5	5,5	5500	0,00055
Cs	27	27	27000	0,0027
Ва	1160	1160	1160000	0,116