Биохимия и молекулярная биология

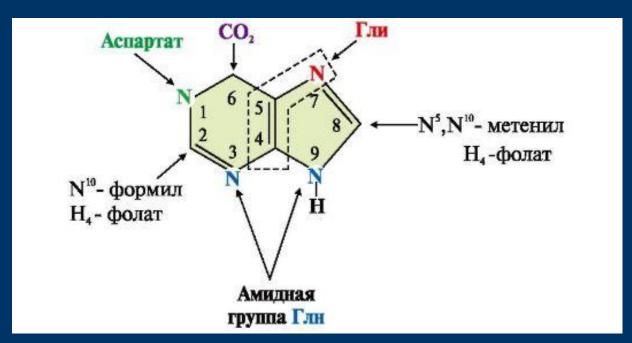
Пекция **5.** Биосинтез пуриновых и пиримидиновых нуклеотидов

План лекции

- Биосинтез пуриновых нуклеотидов de novo
- Биосинтез пиримидиновых нуклеотидов de novo
- Синтез дезоксирибонуклеотидов
- Ресинтез нуклеотидов

Почти все организмы способны синтезировать пуриновые и пиримидиновые нуклеотиды **de novo** из простых предшественников.

Для синтеза нуклеотида необходимо наличие:

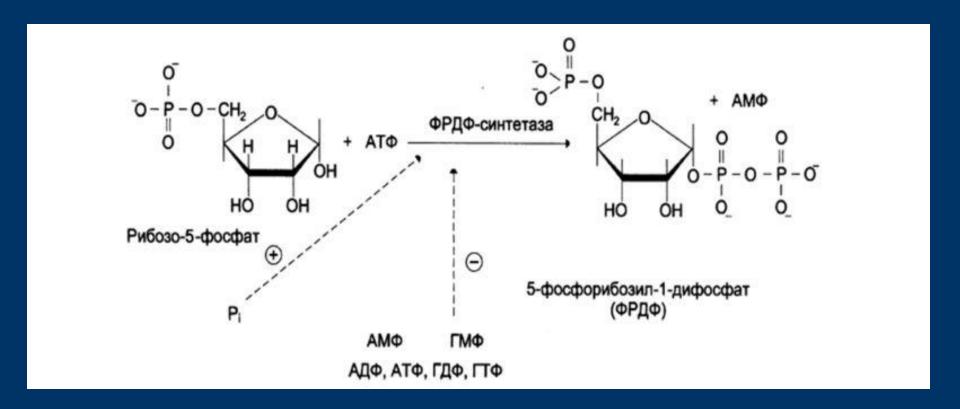

- 1.фосфорной кислоты всегда присутствует в клетке;
- **2** рибозы образуется при распаде углеводов;
- **3** гетероциклических пиримидиновых и пуриновых оснований синтезируются специфическими анаболическими путями.

Синтез пуриновых нуклеотидов происходит во всех клетках организма, преимущественно в печени. Исключением являются эритроциты, полиморфноядерные лейкоциты, лимфоциты.

Процесс синтеза включает 4 этапа:

- 1. Синтез фосфорибозипамина.
- **2.**Образование инозинмонофосфата (ИМФ, ІМР).
- 3. Синтез аденозин- и гуанозинмонофосфатов (АМР и СМР).
- 4. Образование пуриновых нуклеозидди- и трифосфатов.

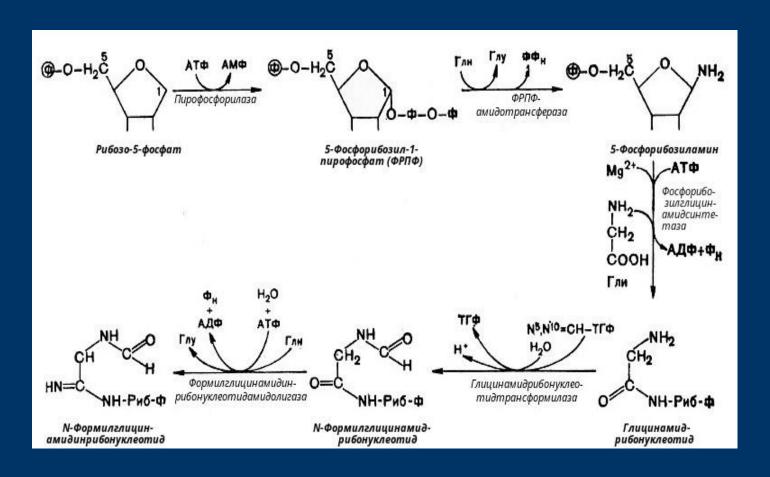
Происхождение атомов углерода и азота в пуриновом цикле

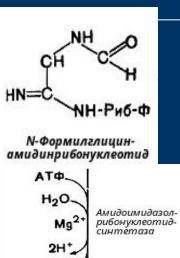


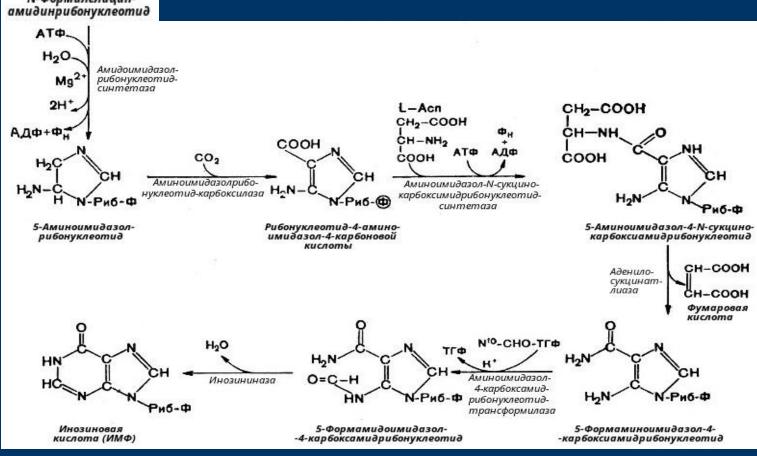
Происхождение каждого атома пуринового гетероцикла установлено в экспериментах с использованием изотопов

Происхождение атомов углерода и азота в пуриновом цикле

```
Аспартат – (атом N в положении 1) CO_2 – (атом C в положении 6) Глутамин – (атомы N в положении 3 и 9) Глицин – (атомы C в положении 4, 5 и атом N в положении 7) N^{10}-CHO-H_4-фолат – Формил - H_4-фолат (атом C в положении 2) N^5, N^{10}=CH-H_4-фолат – Метенил - H_4-фолат (атом C в положении 8)
```

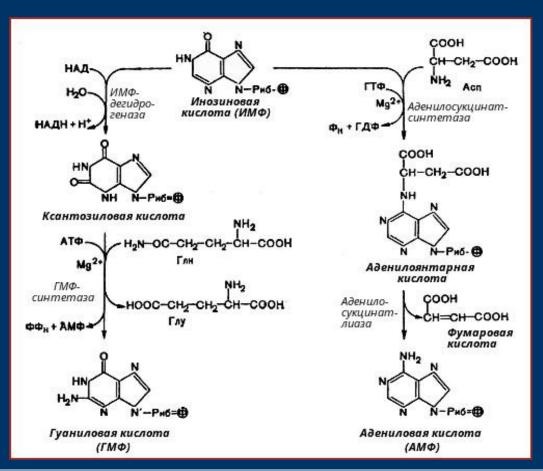

1. Синтез 5-фосфорибозиламина




Образование **5-фосфорибозил-1-амина** является скоростьлимитирующей и регуляторной стадией синтеза пуриновых нуклеотидов. Фермент фосфорибозиламидотрансфераза регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются ИМФ, АМФ и ГМФ.

2. Биосинтез инозинмонофосфата

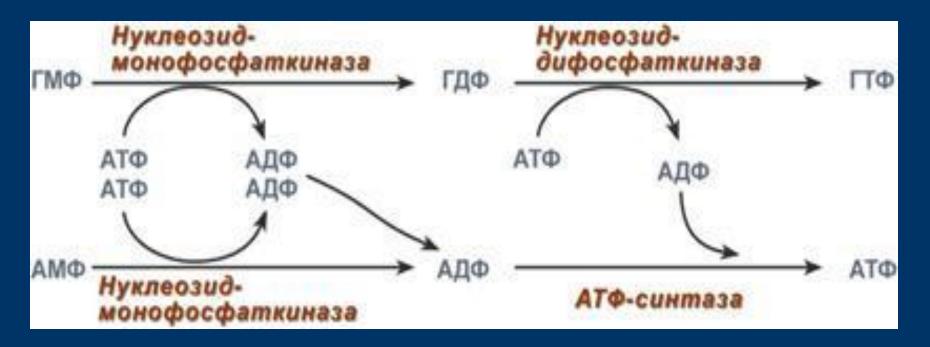
2. Биосинтез инозинмонофосфата (продолжение)



Сборка пуринового гетероциклического основания осуществляется на Φ РД Φ при участии глицина, глутамина, аспартата и одноуглеродных производных тетрагидрофолиевой кислоты (N^{10} -формил- FH_4 и N^5 , N^{10} -метенил- FH_4) в цитозоле: сначала формируется 5-членное кольцо, затем 6-членное кольцо и образуется первый пуриновый нуклеотид — инозинмонофосфат (ИМ Φ , IMP).

Синтез ИМФ включает **10** стадий и требует затраты **6** молекул ATP.

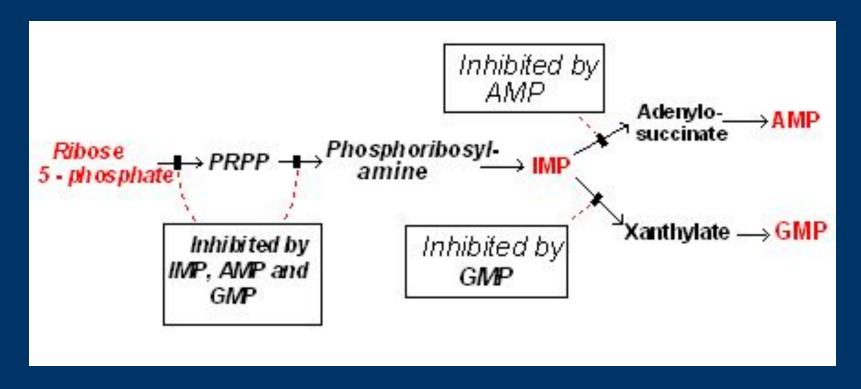
ИМФ – ключевое соединение в синтезе пуриновых нуклеотидов. Из ИМФ далее образуются АМР (АМФ) и GMP (ГМФ).


3. Синтез аденозин- и гуанозинмонофосфата (АМР и **G**MР)

В образовании АМФ из ИМФ участвует аспартат, ГМФ – глутамин

4. Образование ADP, GDP, ATP и GTP

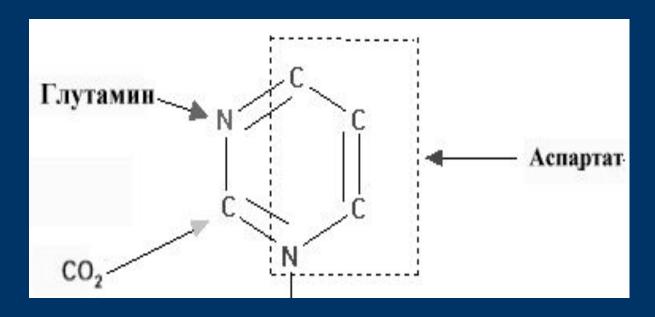
Превращение АМФ и ГМФ в соответствующие нуклеозидди- и трифосфаты протекает в **2** стадии при участии специфических киназ и АТР.



Контроль биосинтеза пуриновых нуклеотидов

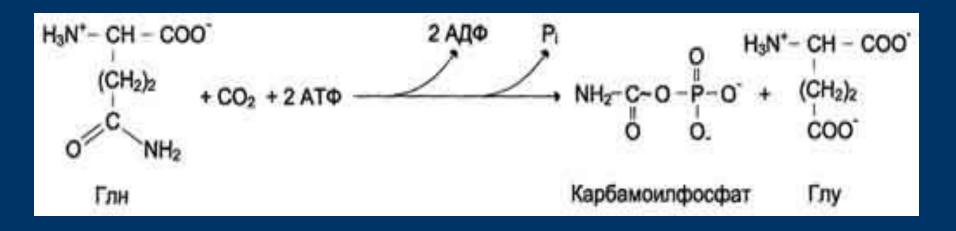
Ключевой фермент - фосфорибозиламидотрансфераза

Контроль биосинтеза пуриновых нуклеотидов


PRPP – фосфорибозилпирофосфат (фосфорибозилдифосфат)

Синтез пиримидиновых нуклеотидов происходит во всех клетках организма. На синтез пиримидинового цикла затрачиваются **2** молекулы ATP.

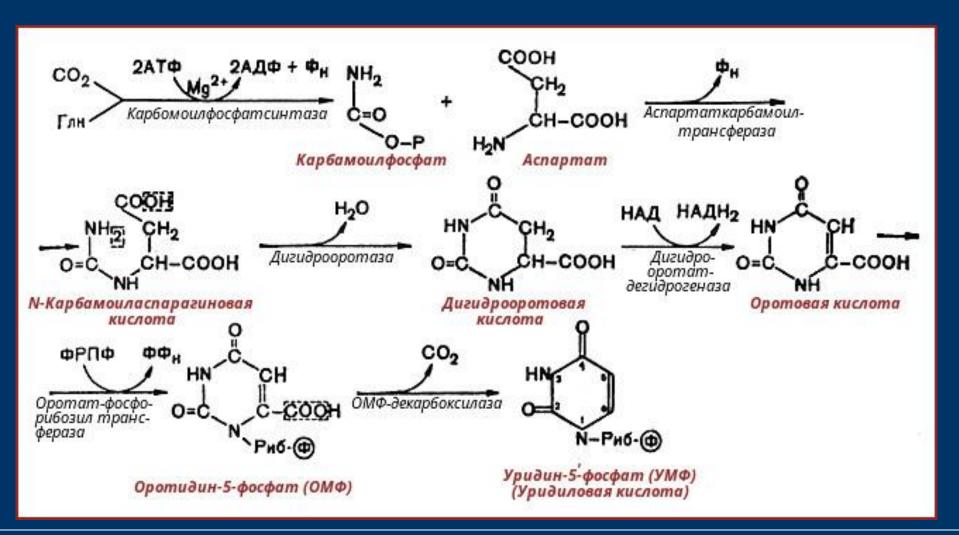
Основные этапы синтеза пиримидиновых нуклеотидов:


- 1. Образование карбамоилфосфата.
- 2. Образование пиримидинового кольца (оротата).
- **3.** Синтез уридинмонофосфата **(UMP,** УМФ).
- **4.** Образование пиримидиновых нуклеозидди- и трифосфатов.

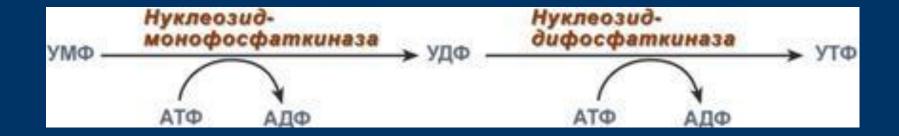
Происхождение атомов С и **N** в пиримидиновом цикле

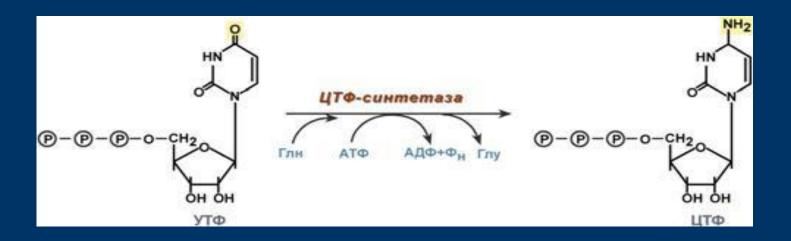
CO₂ – (атом C в положении 2)
Глутамин – (атом N в положении 3)
Аспартат – (атомы C в положении 4, 5, 6 и атом N в положении 1)

1. Образование карбамоилфосфата

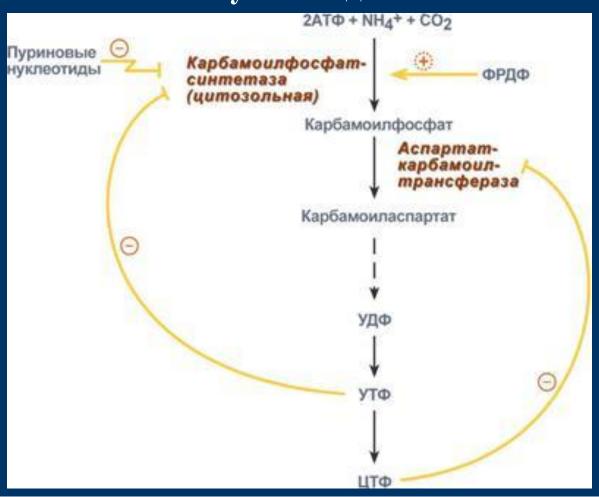


Реакция катализируется карбамоилфосфатсинтетазой **II**, источником **NH₂-**группы карбамоилфосфата служит амидная группа глутамина. Реакция протекает в цитозоле клетки.

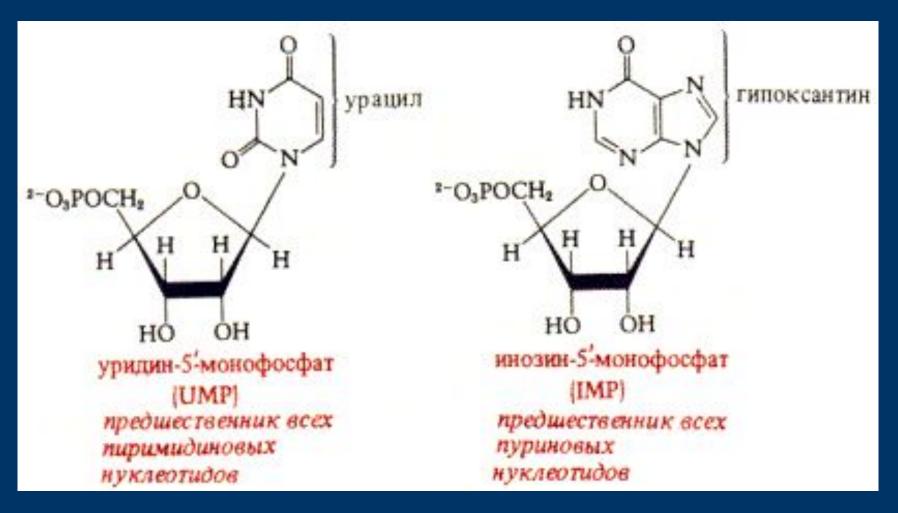

Карбамоилфосфат синтетазы


Сравнительная характеристика карбамоилфосфат синтетаз и ш			
	Карбамоил фосфат	Карбамоил фосфат	
	синтетаза	синтетаза П	
Распределение в тканях	Преимущественно печень	Во всех тканях	
Клеточная локализация	Митохондрия	Цитозоль	
Метаболический путь	Синтез мочевины	Биосинтез пиримидинов	
Источник азота	Ионы аммония	Аминогруппа глутамина	

2, 3. Синтез уридинмонофосфата



4. Синтез пиримидиновых нуклеозидди- и трифосфатов

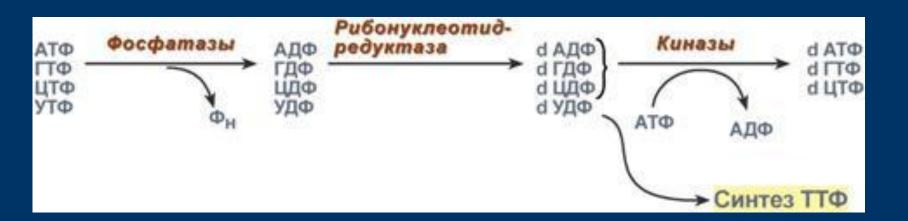


Регуляция синтеза пиримидиновых нуклеотидов

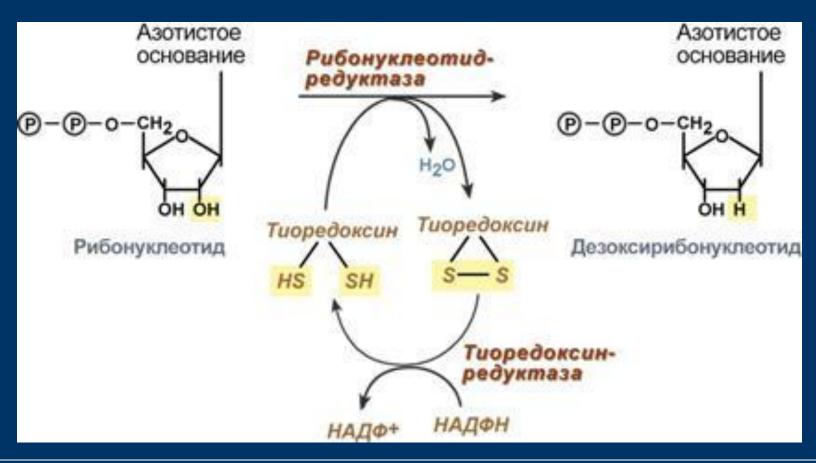
UMP (УМФ) и IMP (ИМФ)

Синтез пуриновых и пиримидиновых нуклеотидов

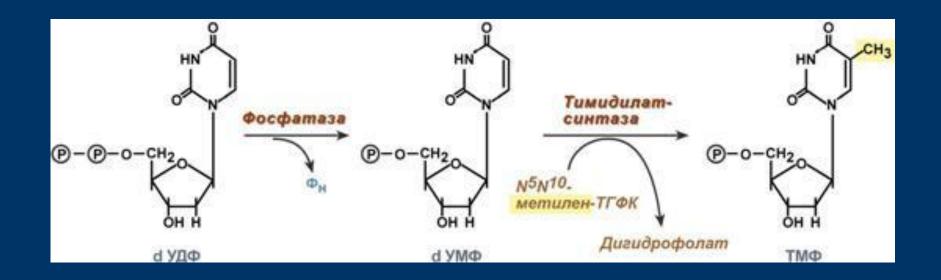
Сравнительная характеристика путей синтеза пуриновых и пиримидиновых нуклеотидов


	Путь синтеза пуринов	Путь синтеза пиримидинов
Последовательность	1. Образование	1. Сборка кольцевой структуры
синтеза	N -гликозидной связи	2. Образование
	2. Сборка кольцевой структуры	N -гликозидной связи
Ключевая реакция	Образование	Образование карбамоилфосфата
	фосфорибозиламина	
Локализация в	Цитозоль	Цитозоль
клетке		
Ферментная	Отдельные ферменты и	Отдельные ферменты и
организация	полифункциональные	полифункциональные
Регуляция	Торможение ІМР, АМР и	Торможение UTP
	GMP на нескольких уровнях	карбамоилфосфат-синтетазы

Биосинтез дезоксирибонуклеотидов


Синтез дезоксирибонуклеотидов

Синтез дезоксирибонуклеотидов происходит в 3 стадии:


- 1. Реакция дефосфорилирования.
- 2. Реакция восстановления.
- 3. Реакция фосфорилирования.

Синтез дезоксирибонуклеотидов: стадия восстановления рибозы

Синтез дезоксирибонуклеотидов

Биологическая роль нуклеотидов:

- а) нуклеозидтрифосфаты субстраты для синтеза ДНК и РНК;
- б) АТР и другие NTP источники энергии;
- в) производные нуклеотидов доноры активных субстратов в синтезе углеводов (UDP-глюкоза), липидов и белков;
- г) производные нуклеотидов участники универсальных систем детоксикации (UDP-глюкуроновая кислота);
- д) участие в реализации сигнальных систем клетки (самр, сыр);
- е) коферментная функция (NAD(P), FMN, FAD).

Биологическая роль нуклеотидов

Ресинтез нуклеотидов

Ресинтез нуклеотидов – путь, использующий свободные пуриновые и пиримидиновые азотистые основания, которые образуются при пвсщеплении нуклеиновых кислот, и фосфорибозилдифосфать Реакции образования нуклеозидмонофосфатов катализируются соответствующими фосфорибозилтрансферазами. Такой способ синтеза нуклеотидов, используемый для экономии ресурсов клетки, особенно характерен для клеток злокачественных опухолей.

Биологическая роль нуклеотидов

Ресинтез нуклеотидов

Ресинтез нуклеотидов – путь, использующий свободные пуриновые и пиримидиновые азотистые основания, которые образуются при пвсщеплении нуклеиновых кислот, и фосфорибозилдифосфат. Реакции образования нуклеозидмонофосфатов катализируются соответствующими фосфорибозилтрансферазами. Такой способ синтеза нуклеотидов, используемый для экономии ресурсов клетки, особенно характерен для клеток злокачественных опухолей. Фонд пиримидиновых нуклеотидов, подобно пуриновым нуклеотидам, в основном синтезируется из простых предшественников *de novo*, и только 10-20% от общего количества образуется по "запасным" путям из азотистых оснований или НУКЛЕОЗИДОВ.

Биологическая роль нуклеотидов

Реакции реутилизации аденина и гуанина, которые образуются при распаде нуклеиновых кислот.

аденин + ФРДФ ---> ФФ + АМФ Фермент: аденинфосфорибозилдифосфат-трансфераза

гуанин + ФРДФ ---> ФФ + ГМФ Фермент: гуанингипоксантинфосфорибозилдифосфаттрансфераза.

Самостоятельная работа

Образование дезоксирибонуклеозиддифосфатов и дезоксирибонуклеозидтрифосфатов.

Реутилизация азотистых оснований.