# Хлор

- I. <u>История открытия хлора</u>
- II. Хлор химический элемент:
  - 1. 1. Положение хлора в ПСХЭ 1. Положение хлора в ПСХЭ. 1. Положение хлора в ПСХЭ. Строение атома
  - 2. Нахождение в природе
- III. Хлор простое вещество:
  - <u>1.</u> 1. <u>Состав. Строение</u>
  - 2. Получение:
- а) в промышленности
- б) в лаборатории

T\_

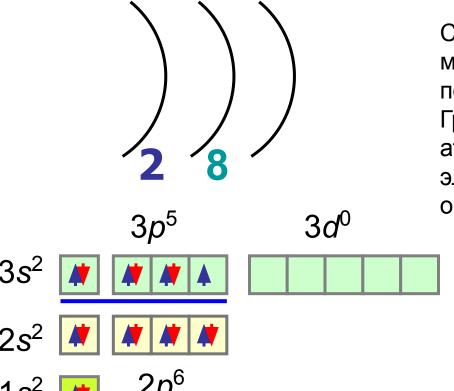
- 3. Химические свойства
- <u>4.</u> 4. <u>Применение</u>



# История открытия хлора

В 1774 году шведский химик Карл Вильгельм Шееле (1742 – 1786) провел опыт, который позволил ему открыть элемент хлор.

MnO<sub>2</sub> + 4HCl = MnCl<sub>2</sub> + Cl<sub>2</sub> + 2H<sub>2</sub>O Полученный газ шведский химик назвал «дефлогистированной муриевой кислотой».


В 1812 году французский химик Жозеф Луи Гей-Люссак (1778 – 1850) дал газу, полученному Шееле, его современное название **«хлор»**, в переводе с греческого «желто-зеленый».





#### Положение хлора в ПСХЭ Д.И. Менделеева. Строение атома.

|    |          | порядковый номер | период | группа      |
|----|----------|------------------|--------|-------------|
| Cl | неметалл | 4177             | സ്ത    | <b>V</b> IA |



Строение электронной оболочки атома можно изображать графически с помощью *квантовых ячеек*. Графические электронные формулы атомов показывают распределение электронов не только по уровням и по орбиталям.

$$1s^22s^22p^63s^23p$$
 валентные электроны



#### Нахождение в природе

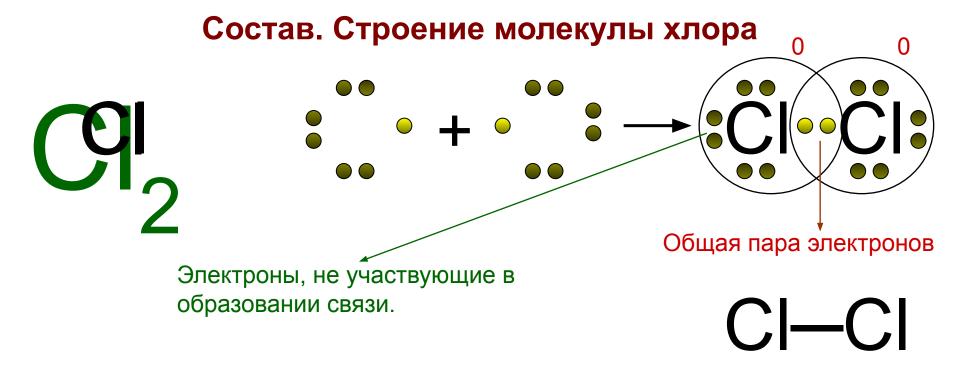
По распространенности в природе хлор занимает 11-е место.

Хлор образует следующие важнейшие минералы:

1. Галит (хлорид натрия NaCl).

Важнейший пищевой продукт, консервирующее средство. Широко используется в химической промышленности для получения хлора, соляной кислоты, гидроксида натрия.




- 3. Сильвинит (хлорид калия-натрия KCI · NaCI);
- 4. Бишофит (хлорид магния MgCl<sub>2</sub>·6H<sub>2</sub>O);
- 5. Карналлит KCI ·MgCl<sub>2</sub> · 6H<sub>2</sub>O);
- 6. **Каинит** (KCI · MgSO<sub>4</sub> · 3H<sub>2</sub>Ō)/

Соединения хлора содержаться в гидросфере: соленых морях и озерах (Эльтон, Баскунчак).

Соединения хлора обязательно присутствуют в живых организмах, прежде

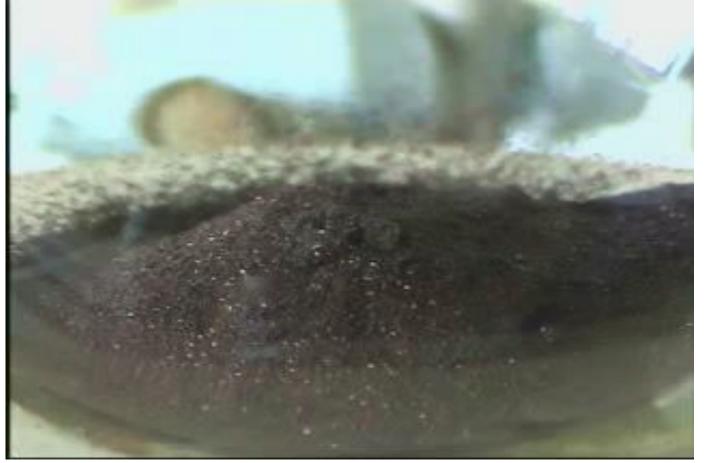
всего в их жидких средах: крови, желудочном соке, лимфе и др.





Химическая связь, возникающая в результате образования общих электронных пар, называется ковалентной.

Ковалентная связь, образующаяся между атомами одинаковых неметаллов, называется неполярной


Кристаллическая решетка

молекулярная



# Получение хлора

В лаборатории:  $2KMnO_4+16HCl=2MnCl_2+2KCl+5Cl_2+8H_2O$ 





В промышленности хлор получают электролизом раствора или

расплава хлорида натрия.

$$2NaCl + H_2O \rightarrow 2NaOH + Cl_2$$
  
 $2NaCl \rightarrow 2Na + Cl_2$ 

# Химические свойства хлора

- 1. Взаимодействие с простыми веществами:
  - а) металлами
  - б) неметаллами
  - 2. <u>Взаимодействие со сложными</u> веществами
  - 3. <u>Взаимодействие с органическими</u> веществами
  - 4. Кислородные соединения хлора



#### 1. Взаимодействие с простыми веществами (металлами):

а)Наиболее энергично хлор реагирует с металлами, причем с некоторыми из них (сурьмой, цезием, рубидием) уже при обычных условиях. Для реакций с другими металлами требуется нагревание.







Составьте уравнения реакций взаимодействия хлора с

сурьмой, учитывая, что образуется хлорид сурьмы (III) или (V)  $2Sb^{0} + 3Cl_{2}^{0} = 2Sb^{+3}Cl^{-1}$ 

 $Sb^{0} - 3e \rightarrow Sb^{+3} \mid 3 \mid 2$   $Cl_{2}^{0} + 2e \rightarrow 2Cl \mid 2 \mid 3$  $Sb^{0} - Bосстановитель,$ 

процесс окисления.

Cl<sub>2</sub> – окислитель, процесс восстановления

железом

 $2\text{Fe}^{0} + 3\text{Cl}_{2}^{0} = 2\text{Fe}^{+3}\text{Cl}_{3}^{-}$   $\text{Fe}^{0} - 3\text{e} \rightarrow \text{Fe}^{+3} \mid 3 \mid 2$   $\text{Cl}_{2}^{0} + 2\text{e} \rightarrow 2\text{Cl}^{-} \mid 2 \mid 3$ 

Fe — восстановитель, процесс окисления.

 $Cl_2$  – окислитель,

процесс восстановления

медью

 $Cu^{0} + Cl_{2}^{0} = Cu^{+2}Cl_{2}^{-}$ 

 $Cu^{0} - 2e \rightarrow Cu^{+2} \begin{vmatrix} 2 & 1 \\ Cl_{2}^{0} + 2e \rightarrow 2Cl \end{vmatrix} \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix}$ 

Cu — восстановитель, процесс окисления.

 $Cl_2$  – окислитель,

процесс восстановления

#### Взаимодействие с простыми веществами (неметаллами)

Взаимодействие хлора с фосфором



Составьте уравнение реакции. Рассмотрите с т.зр. ОВР.

$$3Cl_{2}^{0} + 2P^{0} = 2P^{+3}Cl_{3}^{-}$$
  
 $Cl_{2}^{0} + 2e \rightarrow 2Cl^{-} | 2 | 3$   
 $P^{0} - 3e \rightarrow P^{+3} | 3 | 2$ 

$$5Cl_{2}^{0} + 2P^{0} = 2P^{+5}Cl_{5}^{-}$$
  
 $Cl_{2}^{0} + 2e \rightarrow 2Cl^{-} | 2 | 5$   
 $P^{0} - 5e \rightarrow P^{+5} | 5 | 2$ 

Cl<sub>2</sub> —окислитель, процесс восстановления.

Р – восстановитель, процесс окисления.



#### Взаимодействие хлора с водородом



Составьте уравнение реакции взаимодействия хлора с водородом. Рассмотрите с т. зр. OBP СССО + НСО =

$$CI_2^{\circ} + H_2^{\circ} =$$
 $CI_2^{\circ} + H_2^{\circ} =$ 
 $CI_2^{\circ} + H_2^{\circ} =$ 

 $\mathbf{CI_2}^-$  окислитель, пр. восстановления.  $\mathbf{H_2}^-$  восстановитель, пр. окисления.

#### Взаимодействие со сложными веществами

 $F_2$ 

 $Br_2$ 

1

уменьшение окислительных свойств увеличение восстановительных свойств

**Хлор** вытесняет бром и иод из растворов их солей:



Составьте уравнения реакций вытеснения хлором брома и иода из раствора иодида калия.

$$CI_2 + 2KBr = 2KCI + Br_2$$
  
 $CI_2 + 2KI = 2KCI + I_2$ 

Хлор энергично взаимодействует

с сероводородом.




Составьте уравнения реакции взаимодействия хлора с сероводородом. Рассмотрите с т.зр. OBP

$$Cl_2^0 + H_2S^{-2} = S^0 + 2HCl_2^-$$
  
 $Cl_2^0 + 2e \rightarrow 2Cl_2^-$  | 2 | 1  
 $S^{-2} - 2e \rightarrow S^0$  | 2 |

 $Cl_2$ — окислитель, пр. восстановления S — восстановитель, пр. окисления.

### Хлор вступает в реакции с органическими веществами







#### Взаимодействие хлора с органическими растворителями



Растворение хлора в воде сопровождается и химическим взаимодействием.

$$Cl_2 + H_2O \leftrightarrow HCI + HCIO$$
 хлорноватистая кислота

Хлорноватистая кислота при разложении образует атомарный кислород:

#### Кислородные соединения хлора

Хлор непосредственно с кислородом не взаимодействует, однако этот галоген образует достаточно много кислородных соединений.

| степень   | формула           | название       | формула          | название       | пример             |
|-----------|-------------------|----------------|------------------|----------------|--------------------|
| окисления | кислоты           |                | аниона           |                |                    |
| +1        | HCIO              | хлорноватистая | CIO              | гипохлорит-ион | NaClO              |
| +3        | HCIO <sub>2</sub> | хлористая      | CIO <sub>2</sub> | хлорит-ион     | NaClO <sub>2</sub> |
| +5        | HCIO <sub>3</sub> | хлорноватая    | CIO <sub>3</sub> | хлорат-ион     | NaClO <sub>3</sub> |
| +7        | HCIO <sub>4</sub> | хлорная        | CIO <sub>4</sub> | перхлорат-ион  | NaClO <sub>4</sub> |

усиление кислотных свойств Сила н

Сила кислот увеличивается с увеличением степени окисления атома хлора

Когда хлор пропускают в холодный раствор NaOH получается раствор «Белизна»



 $Cl_2 + 2NaOH = NaCI + NaCIO + H_2O$ 

Широко используется для отбеливания и дезинфекции **хлорная известь** CaCl(ClO)<sub>2</sub> получаемая при взаимодействии хлора с «гашеной известью»

$$CI_2 + Ca(OH)_2 = Ca(CIO)_2 + CaCI_2 + H_2O$$

- Смесь КСІО<sub>3</sub> с фосфором взрывается при ударе

$$5KCIO_3 + 6P = 3P_2O_5 + 5KCI$$

 ${\sf KCIO}_3$  используют при производстве спичек и в пиротехнике

# Применение хлора

- 1. Хлорирование воды
- 2. Лекарства
- 3. Средства защиты растений
- 4. Получение отбеливателей
- 5. Пластмассы
- 6. Растворители
- 7. Красители
- 8. Отбеливание ткани и бумаги





|                                                                     | Тест                                                                           | ответы     |          |  |  |  |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------|------------|----------|--|--|--|--|--|--|
| 1.                                                                  | Положение элемента хлора в ПСХЭ:                                               |            |          |  |  |  |  |  |  |
|                                                                     | <ul><li>А) 2-период, главная подгруппа VII группа;</li></ul>                   |            |          |  |  |  |  |  |  |
|                                                                     | Б) 3-период, главная подгруппа VII группа;                                     | Б          |          |  |  |  |  |  |  |
|                                                                     | B) 2-период, главная подгруппа VII группа;                                     |            |          |  |  |  |  |  |  |
|                                                                     | Г) 1-период, главная подгруппа VII группа.                                     |            |          |  |  |  |  |  |  |
| 2.                                                                  | Последовательность цифр 2 – 8 – 7 соответствует распределени                   | ию В       |          |  |  |  |  |  |  |
|                                                                     | электронов по энергетическим уровням атома:                                    |            |          |  |  |  |  |  |  |
|                                                                     | А) брома; Б) иода; В) хлора; Г) фтора.                                         |            |          |  |  |  |  |  |  |
| 3.                                                                  | Электронная формула внешнего энергетического уровня атома                      | Γ          |          |  |  |  |  |  |  |
|                                                                     | хлора соответствует электронной конфигурации:                                  |            |          |  |  |  |  |  |  |
|                                                                     | A) $ns^2np^3$ B) $ns^2np^4$ B) $ns^2np^6$ $\Gamma$ ) $ns^2np^5$                | _          |          |  |  |  |  |  |  |
| 4                                                                   | Б                                                                              |            |          |  |  |  |  |  |  |
|                                                                     | A) NaCl; $\Box$ |            |          |  |  |  |  |  |  |
|                                                                     | . Какая из данных формул относится к сильвиниту:                               | г          |          |  |  |  |  |  |  |
|                                                                     | A) NaCl; B)CaCl <sub>2</sub> ; Γ) KCl · NaCl                                   | •          |          |  |  |  |  |  |  |
| 6. Хлор проявляет максимальную степень окисления в кислоте, формула |                                                                                |            |          |  |  |  |  |  |  |
|                                                                     | которой:                                                                       | A          |          |  |  |  |  |  |  |
|                                                                     | A) $HCIO_4$ ;                                                                  |            |          |  |  |  |  |  |  |
| 7.                                                                  | Свойство, характерное для хлора.                                               | _          |          |  |  |  |  |  |  |
|                                                                     | А) жидкость красно-бурого цвета; В) газ желто-зеленого цвета                   | a; B       |          |  |  |  |  |  |  |
|                                                                     | Б) газ желтого цвета; Г) твердое вещество.                                     |            |          |  |  |  |  |  |  |
| 8.                                                                  | Хлор взаимодействует с веществом, формула которого:                            | A <b>-</b> | <b>V</b> |  |  |  |  |  |  |
|                                                                     | A) NaBr; Б) NaF; В) HF; $\Gamma$ ) О $_2$ .                                    | A          | П        |  |  |  |  |  |  |
|                                                                     | _                                                                              |            |          |  |  |  |  |  |  |