MINISTRY OF PUBLIC HEALTH ZAPOROZHYE STATE MEDICAL UNIVERSITY DEPARTMENT OF ORGANIC AND BIOORGANIC CHEMISTRY

LECTURE: CARBOHYDRATES. MONO-, DI-, POLYSACHCRIDES.

PLAN

- 1. Classification of carbohydrates.
- 2. Nomenclature.
- 3. Structural representations be Fisher and Haworth.
- 4. Chirality. Optical isomers.
- 5. Tautomerism. Mutarotation.
- 6. Epimerization.
- 7. Chemical properties:
- 8. Identification reactions.
- 9. Disaccharides: maltose, galactose, cellobiose, sucrose.
- 10. Polysaccharides: starch, hyaluronic acid, chondroitin sulfate, heparin.

Carbohydrates

The term "carbohydrate" was proposed by K.G. Shmidt in 1844.

 $C_n(H_2O)_m$ (n=3-9) *A carbohydrate* is macromolecule, consisting of carbon, hydrogen, and oxygen atoms, usually with a hydrogen : oxygen atom ratio of 2:1 (as in water) with the empirical formula $C_m(H_2O)_n$. Structurally they are **polyhydroxy** <u>aldehydes</u>Structurally they are polyhydroxy aldehydes and ketones.

Carbohydrates. Classification.

There are **two classes** of carbohydrates: **simple** carbohydrates and **complex** carbohydrates.

Simple carbohydrates are **monosacrharides** (2 or more monosachcharides linked together). **Disachcharides** have 2 linked monosaccharides. **Oligosacharides** have 3 to 10. **Polysaccharides** have 10 or more.

Homopolisaccharides consist of the same monosaccharide residues (starch, cellulose, etc.).

Heteropolysaccharides – of different monosaccharide residues (hyaluronic acid, etc.).

Monosaccharide's classification.

type of the carbonyl group

Carbon chain length

3 Carbon - Trioses are not saccharides.

4 Carbon - Tetroses are unknown in nature.

5 Carbon - Pentoses

are widely used.

6 Carbon - Hexoses

The number of optical isomers: N=2ⁿ (number of asymmetric centers)

Structure of monosaccharides.

Carbonyl and hydroxyl groups of monosaccharides react to form **intramolecular hemiacetal**:

The structure of monosaccharides is presented in three forms:

1. Fisher projection: straight chain representation.

2. Haworth projection: simple ring in perspective.

3. Conformational representation: chair and boat configurations.

Structure of monosaccharides. **Fisher projection**

Hydroxyl group at the anomeric center is called a hemiacetal or glycoside.

Diastereomers - stereoisomers that are **not** mirror images of each one.

Anomers - diastereomers differing in configuration of the anomeric carbon atom.

At the location of α -anomer hemiacetal hydroxyl is the same as "end" chiral center hydroxyl.

10

Characterisic tautomerism is **ring-chain** or **cyclo-oxo** tautomerism.

"It's always better to $\beta e up$ ".

Mutarotation is the change in specific rotation that occurs when an α or β form of a carbohydrate is converted to an equilibrium mixture of the two.

Isomeric transformation of monosaccharides by the action of alkalis is called **epimerization**.

Epimers are called diastereoisomers, that are differ by configuration of only one of several chiral centers (D-glucose and D-mannose, D-xylose and D-ribose, etc.).

Epimerization in alkaline media

Chemical properties 1. Intermolecular dehydration HCl; t - 3H₂O pentose furfural HCl; t hexose - 3H₂O HOH₂C 5-hydroxymethylfurfural

Reaction to distinguish pentoses from hexoses.

Reaction to distinguish pentoses from hexoses.

Molish test

red-violet condensation product

Selivanov's test

2. Reactions involving aldehyde group

Reaction with hydroxylamine

Cyanohydrin's synthesis

(the product with one <u>more</u> carbon atom)

c) Oxidation by enzymes

Identification of aldehyde group with:

6. Acylation:

Disaccharides (bioses)

Depending on the method of the glycosidic bond formation

In reducing disaccharide glycoside bond is formed by hemiacetal (glycoside) hydroxyl group and one alcoholic hydroxyl group (usually at C4) of another monosaccharide. Thus, there is one free hemiacetal hydroxyl group.

In nonreducing disaccharide there is absent free hemiacetal hydroxyl.

4-O-(α -D-Glucopyranosyl)-D-Glucopyranose

 $4-O-(\beta-D-Glucopyranosyl)-D-Glucopyranose$

 $4-O-(\beta-D-Galactopyranosyl)-D-Glucopyranose$

2-O-(α -D-Glucopyranosyl)- β -D-**Fructo**furanoside

"Inversion" - a sign change of the specific rotation after the hydrolysis of sucrose. A mixture of equal amounts of D-glucose and D-fructose is **invert sugar.**

Sucrose. chemical properties.

- Doesn't mutorotate
- No silver mirror reaction
- No reactions by aldehyde group

- Hydrolysing to glucose and fructose
- Alkylation to ethers
- Acylation to esters

Amylose with iodine forms clastrates of dark blue color.

Amylopectin

(x < n)

cellulose

Heteropolysaccharides: Hyaluronic acid β -1,3-glycosidic bond β -1,4-glycos idic bond

OH

D-glucuronic acid

OH

D-N-acetylglucosamine

NH-C-CH₃

Chondroitin sulfate

Thank You for Your attention!