Тема №4

ПЕРИОДИЧЕСИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА Д. И. МЕНДЕЛЕЕВА

Формулировки

«Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости *от атомных весов* (?) элементов»

«Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра (!) атомов элементов»

Естественный ряд химических элементов $_1$ H, $_2$ He, $_3$ Li..... $_{108}$ Hs, $_{109}$ Mt образует систему с периодическим изменением электронной конфигурации и свойств химических элементов, а также образуемых ими простых и сложных веществ.

Создание и эволюция Периодической системы

- 1. 8 элементов известны с древности Fe, Ag, Au, Hg, Pb, S, C, Sn.
- 2. Получены в средние века Zn, As, Sb, Bi, P.
- 3. XVIII век Ni, Zr, Mo, Te, Ba, Pt, H, Be, N, O, F, Cl, T, Cr, Mn, Co.
- 4. XIX век He, Li, B, Ne, Na, Mg, Al, Si, Ar, K, Ca, Sc, V, Ga, Ge, Se, Br, Kr, Rb, Sr, Y, Nb, Ru, Rh, Pd, In, I, Xe, Cs, La, лантаноиды, актиноиды.
 - XIX-XX вв. систематизация и уточнение разрозненных сведений о природе химических элементов.

ПОИСК ФУНДАМЕНТАЛЬНОГО ЗАКОНА!!!!

- -1829 г. ТРИАДЫ И. Деберейнера: группы из трех элементов со сходными химическими свойствами (CI, Br, и Ca, Sr, Ba)
- -Развитие спектроскопии (Р. Бунзен, Г. Кирхгофф): открытие ряда новых элементов;
- -1862 г. СПИРАЛЬ де Шанкрутуа (расположение в порядке возрастания атомных масспохожие элементы попадают в вертикальные столбцы)

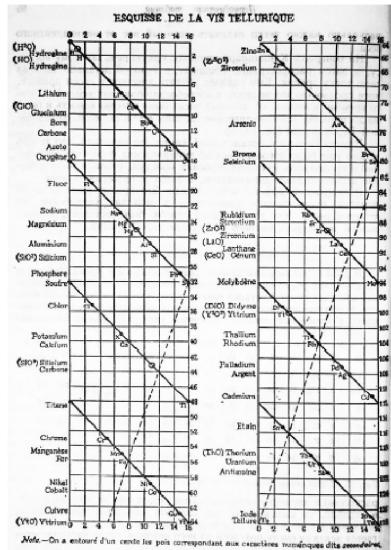
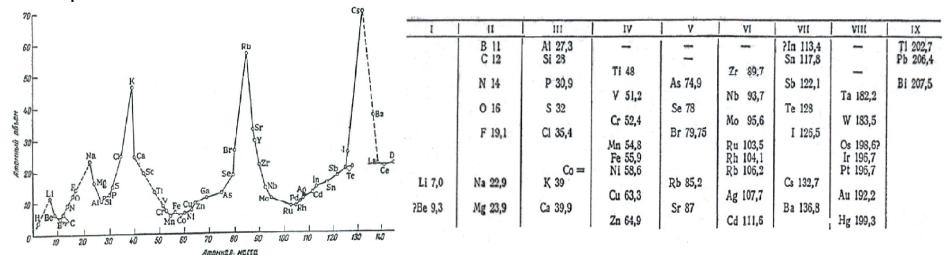


Рис. 14. «Винтовой график» Бегуйе де Шанкуртуа (1862 г.) Расположию влементы в порядке возрастания их атомных весов, ученый соединил линиями влементы с

- -Разграничение понятий атомная и молекулярная масса, разработка методик их точного определения (С. Канниццаро);
- -1864 г. Закон ОКТАВ А.Ньюлендса: элементы располагаются в порядке возрастания атомных масс, свойства повторяются в каждой восьмой позиции


₩.	м	Na	N	No	х	Ni.	Na
G 3	F 8 Na 9 Mg 10 Al 11 Si 12 P 13 S 14	Cl 15 K 16 Cd 17 Cr 19 Ti 18 Mn 20 Fe 21	In 26	Rb 30 Sr 31 Ce # La 33 Zr 32	Sn 39	Ban V 45 Ta 46 W 47	Pt 11 Ir 50 Tl 53 Pb 54 Th 56 Hg 52 Bi 55 Os 51

в периоде не более 8 элементов?????

- 1864 г. классификация Олдинга элементы располагаются в порядке возрастания их атомных масс и валентности

			Mo 96 Pd 106,5	W 184 Au 196,5 Pt 197
Li 7 G 9 B 11 C 12 N 14 O 16 F 19	Na 23 Mg 24 Al 27,5 Si 28 P 31 S 32 Cl 35,5	Zn 55 — As 75 Se 79,5 Br 80	Ag 108 Cd 112 Sn 118 Sb 122 Te 129 I 127	Hg 200 Tl 203 Pb 207 Bi 210
	K 39 Ca 40 Ti 48 Cr 52,5 Mn 55	Rb 85 Sr 87,5 Zr 89,5	Cs 133 Ba 137 V 138	Th 231

-1970 г. Л.Мейер (независимо от Д.И. Менделеева объединил элементы в группы, но опубликовал свою работу на 1 год позже!): расположение в порядке возрастания атомных масс и атомных объемов.

Включает и «октавы» Ньюлендса и «триады» Деберейнера

Недостатки таблицы Л. Мейера: некоторые элементы расположены неверно, цель работы – формальная классификация известных к тому времени простых веществ

-1869 г. Периодический ЗАКОН и Периодическая таблица Д.И. Менделеева

СВОЙСТВА ПРОСТЫХ ВЕЩЕСТВ, А ТАКЖЕ ФОРМЫ И СВОЙСТВА СОЕДИНЕНИЙ ЭТИХ ЭЛЕМЕНТОВ НАХОДЯТСЯ В ПЕРИОДИЧЕСКОЙ ЗАВИСИМОСТИ ОТ АТОМНЫХ МАСС ЭЛЕМЕНТОВ

Менделеев не принимал атомную массу элемента, как абсолютную величину. При определении положения элемента в таблице дополнительно учитывались химические свойства эемента.

РЕЗУЛЬТАТ:

уточнение атомных масс известных элементов

предсказание свойств новых элементов

УНИВЕРСАЛЬНЫЙ ЗАКОН!!!!!

Первоначальная периодическая таблица Д. И. Менделеева

опытъ системы элементовъ.

```
основанной на ихъ атомномъ въсъ и химическомъ сходствъ. Ti = 50 \qquad Zr = 90 \qquad ?= 180. V = 51 \qquad Nb = 94 \qquad Ta = 182. Cr = 52 \qquad Mo = 96 \qquad W = 186. Mn = 55 \qquad Rh = 104.4 \quad Pt = 197.4 Fe = 56 \qquad Ru = 104.4 \quad Ir = 198.
```

 $Ni = C_0 = 59$ Pi = 106,6 $O_5 = 199$. $C_0 = 63,4$ Ag = 108 Hg = 200.

> Be- 9,4 Mg = 24 Zn = 65,2 Cd = 112 B-11 Al = 27,4 ?=68 Ur = 116 Au = 197?

C=12 Si = 28 ?=70 Sn = 118 N=14 P=31 As=75 Sb = 122 Bi = 210?

0=16 S=32 Se=79,4 Te=128?

F=19 Cl=35,sBr=80 I=127

Li = 7 Na = 23 K = 39 Rb = 85,4 Cs = 133 Ti = 204. Ca = 40 Sr = 87,6 Ba = 137 Pb = 207.

7-45 Ce=92

?Er=56 La=94

?Yt-60 Di-95

?ln = 75,6 Th = 118?

1 марта 1869 г.

Расположение в порядке возрастания атомных весов (масс), но:

-изменил атомные веса ряда элементов (U – 240, «последний» элемент)

-сформулировал понятия о группах, малых и больших периодах (оценил их «емкость»),

-назвал систему «естественной»,

-предсказал существование новых элементов (экабор – Sc, экаалюминий – Ga, экасилиций - Ge)

Периодическая таблица Д. И. Менделеева (1871 г.)

Ряд	Группа I R ₁ O	Pynna II RO	Pynna III R,O,	Группа IV RH ₄ RO,	Группа V RH ₃ R ₂ O ₃	Группа VI RH, RO,	Группа VII RH R ₂ O ₂	Групп Р	a VIII
2 3 4	H = 1 Li = 7 Na = 23 K = 39	Be = 9,4 Mg = 24 Ca = 40	B = 11 Al = 27,3 — = 44	C = 12 Si = 28 Ti = 48	N = 14 P = 31 V = 51	0 = 16 S = 32 Cr = 52	F = 19 Cl = 35,5 Mn = 55	Fe = 56	Co = 59
5	(Cu = 63) Rb = 85	Zn = 65 $Sr = 87$	-= 68 ?Yt = 88	$ \begin{array}{c} - = 72 \\ Zr = 90 \end{array} $	As = 75 Nb = 94	Se = 78 Mo = 96	Br = 80 -= 100	Ni = 59 Ru = 104 Pd = 106	Cu = 63 Rh = 104 Ag = 108
7 8 9	(Ag = 108) Cs = 133 (-)	Cd = 112 Ba = 137	In = 113 ?Di = 138 ?Er = 178	Sn = 118 *Ce = 140 	Sb = 122 $Ta = 182$	Te = 125 - W = 184	1 = 127 -	Os = 195	Ir = 197
11 12	_ (Au = 199)	Hg = 200	_T1 = 204	Pb = 207 $Th = 231$	_Bi = 208	U = 240	_	Pt = 198	Au = 199

Первая классическая короткая форма ПСЭ. «Белые пятна»? РЗЭ? Трансурановые?

- -1894-1900 гг. открытие благородных газов (Д.Рэлей, У. Рамзай, В. Дорн) привело к появлению новой VIII группы элементов в составе ПС (между галогенами и щелочными металлами);
- -1913- 1921 гг. развитие квантовых представлений, определение заряда ядра атома (Г. Мозли), теория строения атома (Н. Бор) привело к пересмотру представлений о причинах периодичности и отказу от атомной массы, как основной характеристики элемента.

СОВРЕМЕННАЯ ФОРМУЛИРОВКА ПЕРИОДИЧЕСКОГО ЗАКОНА:

Свойства элементов, а так же формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра их атомов

РЕЗУЛЬТАТ:

-Устранение нарушений периодичности, вызванных различиями в изотопном составе элементов

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И.МЕНДЕЛЕЕВА www.calc.ru ЭЛЕ M E HTO Пери-Ряды VIII ОДЫ ба б He 2 ГЕЛИЙ водород 7 0 F Be 10 БЕРИЛЛИЙ **УГЛЕРОД** A3OT кислород ФТОР HEOH литий БОР 17 Ar 18 Na Mg Д.И. Менделеев АРГОН НАТРИЙ МАГНИЙ **АЛЮМИНИЙ** КРЕМНИЙ ФОСФОР **ХЛОР** 35 453 1834-1907 25 Mn 23 Fe ж**ЕЛЕЗО** 55.849 **МАРГАНЕЦ** 54.938 **КОБАЛЬТ** 58.933 **ВАНАДИЙ** 50.941 **XPOM** 51.996 **НИКЕЛЬ** КАЛИЙ СКАНДИЙ HATNT КАЛЬЦИЙ ПОРЯДКОВЫЙ 4 СИМВОЛ HOMEP 31 Ge 32 33 34 35 36 29 ЭЛЕМЕНТА Cu 5 цинк ГАЛЛИЙ 65.37 69.72 ГЕРМАНИЙ БРОМ КРИПТОН 18 МЫШЬЯК 40 41 Nb 42 Mo 43 37 37 . Sr ТЕХНЕЦИЙ **РУТЕНИЙ РОДИЙ** РУБИДИЙ СТРОНЦИЙ ИТТРИЙ цирконий ниобий РУБИДИЙ 85,468 50 51 52 53 Xe 54 КСЕНОН СЕРЕБРО КАДМИЙ индий олово СУРЬМА ТЕЛЛУР НАЗВАНИЕ ЭЛЕМЕНТА 55 | Ba Ta 57-71 ОТНОСИТЕЛЬНАЯ **ИРИДИЙ** ЛАНТАНОИДЫ **TAHTA**180 948 ВОЛЬФРАМ **РЕНИЙ** ОСМИЙ ПЛАТИНА ЦЕЗИЙ АТОМНАЯ МАССА 83. Po 84 6 At Rn Au РАСПРЕДЕЛЕНИЕ **30ЛОТО** РТУТЬ ТАЛЛИЙ СВИНЕЦ висмут полоний РАДОН ЭЛЕКТРОНОВ по слоям 106 Sg Bh 87 104 105 Dh Hn 89-103 10 дубний ФРАНЦИЙ РАДИЙ **АКТИНОИДЫ** РЕЗЕРФОРДИЙ БОРИЙ МЕЙТНЕРИЙ s-элементы **ВЫСШИЕ** R_2O RO R_2O_3 RO₂ R_2O_5 RO₂ R_2O_7 RO₄ р-элементы ОКСИДЫ ЛЕТУЧИЕ d-элементы RH RH₃ H₂R HR водородные СОЕДИНЕНИЯ f-элементы ЛАНТАНОИДЫ 67 Ho 68 Er 69 Tm 770 Yb 771 Lu 6 361 Pm 362 Sm 363 Eu 364 Gd 365 Tb §66 Dv 358 Ce 359 Pr 360 Nd 27 18 ТЕРБИЙ 18 ДИСПРОЗЙЙ 18 ГОЛЬМИЙ 18 ПРОМЕТИЙ 14 CAMAРИЙ 18 ЕВРОПИЙ 18 ГАДОЛИНИЙ ТУЛИЙ 32 ИТТЕРБИЙ 32 ЛЮТЕЦИЙ **ЦЕРИЙ** 18 ПРАЗЕОДИМ 18 **ЭРБИЙ** 18 НЕОДИМ **АКТИНО** U 293 Np 294 Pu 295 Am 296 Cm 297 Bk 298 Cf 299 Es 3100 Fm 3101 Md 3102 No 3103 Lr УРАН 18 НЕПТУНИЙ 18 ПЛУТОНИЙ 18 АМЕРИЦИЙ 18 КЮРИЙ 18 БЕРКЛИЙ 18 КАЛИФОРНИЙ 18 ЭИНШТЕЙНИЙ 18 ФЕРМИЙ 18 МЕНДЕЛЕВИЙ 18 НОВЕЛИЙ 18 ЛОУРЕНСИЙ ТОРИЙ 18 ПРОТАКТИНИЙ

СТРУКТУРА ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ (короткая форма)

Горизонтальные ряды – ПЕРИОДЫ (1-7)

Малые (короткие) периоды (1,3) – 8 элементов

Большие (длинные) периоды (4-7) – 18,18, 32,32 + 2 семейства элементов - лантаноиды и актиноиды)

Вертикальные ряды – ГРУППЫ (I-VIII):

Главные подгруппы (A) – входят элементы малых и больших периодов

Побочные подгруппы (B) – входят элементы только больших периодов

Donay 1 Period	1 1 1 259.14 1 252.87 2.022- Hydrogen Bogopous Bulletos 1 180.54 1347 0.880.97 Lizhium Burrus 22.989770 11 Na 97.88 883.15	Современная периодическая система элементов Д.И.Менделеева а томная масса, относительная ред										Villa 18.9984032 9 F 2h'2p' -219.62 -186.11 3.9944.10 Fluorine Ortop //iscoun 35.4527 17 CI 36'3p' -100.98	18 0 4 0002602 2 He 1s* ~272.2 -266.93 12.3 eV Hellum Female 20.1797 -246.05 10.6 eV Noom Hoose 39.948 18.Ar 3s*3p* -186.2 -186.7 -186.2 -186.7					
1.50	0.93/1.01 Sodium	1107 2355 280 444.874 34.8 1.31/1.23 1.901.74 2.19/2.06 2.88/2.43 1.62.83 8.88/2.43 1.901.74 2.19/2.06 2.88/2.43 1.62.83 1.62.											7.7 eV					
4	19 K [A/)4s ¹ B3.65 774 0.82/0.91 Potassium Kansa	40.078 20 Ca 4a° 839 1487 1.00/1.04 Calcium	18b 44.955910 21SC 3d'4s' 1541 2831 1.36/1.20 Scandium	1070 3287 1670 3287 1.54/1.32	50.9415 23 V 3d'4s' 1890 3380 1.63/14.9 Venedium	VIb 51,9961 24 C r 3d'4a' 1857 2672 1,66/1,56 Chromium	25 Mn 3d'4s' 1244 1962 1.85/1.60 Manganese Mapraesu	3d'4s' 1535 2750 1.83/1.64 Iron Weneso	VIII 58.933200 27Co 3d'4s' 1496 2870 1.86/1.70 Cobalt KoGanar	10 VIII 58.5934 28 Ni 3d'4s' 1453 2732 1,91/1.75 Nickel Hiessma	11 lb 63.546 29 C U 3d"4s" 1083.4 2567 1.901.75 Copper Mega-	15 10 30 Zn 30 Zn 30 Zn 419.88 907 1.55(1.06 Zine Upess	(Atominum) Anomenes 69.723 31 Ga 32"4s'4p' 29.78 2403 1.81/1.82 Gallium	72.61 32Ge 30"49'49' 937.4 2830 2.01/2.02 Germanium	Phosphorus Gocdep 74.92160 33AS 3d"46'49' 617 (3,756Pa) oyolus16 7.16/220 Arsento Manualte	78.96 345e 3d*4e*4p* 217 684.9 2.55/2.48 Setenium	79.904 35 Br 36"4s'4p' -7.25 58.78 2.902.74 Bromine Epoin	Argen Apron 83.60 36 Kr 3d"44'49' -156.6 -152.3 6.8 eV Krypton
5	85.4678 37 Rb pcrj5a' 38.89 887.2 0.82/0.89 Rubidium Pytinana	-	Скандий 88.90585 39 Y 4d'5s' 1522 3337 1.22/1.11 Yttrium Wrypen	181.224 40 Zr 4d'5s' 1852 4377 1.33/1.22 Zirconium	Ванадий 82.90638 41 Nb 4d'6s' 2468 4742 1.6/1.23 Nicohum Нисобий	Xposs 95.94 42 MO 4d'5s' 2617 4612 2.16/1.30 Molybderum Monefigee	43 TC 43 TC 43 TC 43 TC 43 TC 43 TC 1.9/1.30	44 Ru 4d'5s' 2310 (-3900) 2.2/1.42 Ruthenium	102,00550 45 Rh 46'fis' 1968 3727 2,2/1,5 Rhodium Pogesi	106.42 46 Pd 46" 1552 3140 2.2/1.4 Palladium	47Ag 4d*5s' 961.93 2212 1.9/1.4 Biliver CepeSpo	112.411 48Cd 46°5s' 320.9 765 1.771.5 Cadmium Kannesi	114.818 49 in 4d*5e*5e* 156.78 2080 1.76/1.5 Indium	118.710 50 Sn 4d"5a'5p' 231.88 2270 1.96/1.7 Tin Onceso	121.760 51Sb 4d"5a"5p" 630.5 1750 2.05/1.8 Antimony Cypsas	Селен 127.60 52 Те 4d "Se"Sp" 449.5 989.8 2.1/2.0 Tellurium Телгур	126.90447 53 4d°5s°5s° 113.5 184.35 2.66/2.2 ledine Mog	131.29 54 Xe 4d*5s*5o* -111.9 -107.1 5.85 eV Xenon Koanen
6	132 90545 550 S [Xe]6e'28.5 878.4 0.79/0.88 Cassium Lipsina (Cassium)	137.327	138.9056 57 L.a. 50'69' 920 3454 1.10/1.08 Lanthamore Rantas	178.46 72 Hf 41°5d°6s° 2227 4002 1.3/1.23 Hafnium Гафина	180.9479 73 Ta 41"5d'ts/ 2996 5425 1.5/1.33 Tentalum Taerran	183.84 74 W 4f*5d*0s* 3410 5660 1.7/1.40 Turgusten (Wooldram) Bont-dipase	186.207 75Re 41"5d'86" 3180 5027 1.011.46 Rhenium	190.23 760s 41°54°04' 3045 5027 2 2/1.52 Osmium Oceans	192,217 77 Ir 41°5d'0s' 2410 4130 2.2/1.6 Iridium	195.078 78 Pt 41°56'04' 1773.5 3830 2.2/1.4 Platinum flaarnessa	190,96655 79Au 41°5d°6s' 1064.43 2807 2.5411.42 Gold 3anores	200.59 80 Hg 40 Hg 40 Hg 40 Hg 356.6 1.941.5 Mercury Pryth	204.3833 81 TI 47'50'50'50' 303.5 1.62/1.44 Thallium Tarana	82Pb 41°50°66°69° 327.5 1740 2.33/1.55 Leed Connectors	(Stiblum) 208 98038 83 Bi 4"56"6e'6p' 271.3 1564 2.02/1.67 Bismuth Buckey	(210) 84Po 4156 6/66 254 962 2.011.76 Polonium Donouse	85 At 41°50°56°50° 3022 337 2 2/1.86 Astatine Acran	(222) 86 Rn «1"5d"be"by" -71.0 -61.8 5.1 eV Radon Pagon
7	87 Fr (Fing7s) 27 0.7/0.86 Francium	88 Ra 7s* 970 1140 0.890.97 Radium	89AC 6d7s ² 1050 (-3250) 1.1/1.0 Actinium	104 Rf 50°65'76'	105 Db 61°64'79'	106 Sg Si*8d*7s*	107 Bh scedts	108 HS SFSd75	109 Mt SCBd7a	110 Uun schedys	111 Uuu srisdine	112 Uub sred 7s'	113 Unt	114 Uuq SrSe 7x7p	D.P.C.Caike A.P.Caike D.R.S.Saife A.R.Saife	фуллин, фуллин, 200		
20 mp 40 mm (A)	Signative elementhese ref- cisons (mass bite isotope () isotope () isotope (), isotope isotope (), isotope isotope (), isotope isotope (), isotope iso	west yctok-wi were a coofica wenne waccoa ychonoa a sa senayuaro as nglish name diling of the si shoe annusica se написание	s in ther of se most suck x oro pe) orons	140,110 58Ce 4f'6s' 798 5-1,2/1,1 Cerlum Llepmin 6d'7s' (-3800) 1,11/1,1 Thorium Topuia	Дубний 140,90760 59 РГ 41°61° 831 3512 -1.2/1.1 Ргамофукім Прамофукім (2231) 91 Ра 50°65'76° 1572 4230.4500 1.14/1.1 Ревыбобныя Бротагламай	144.24 60 Nd 41°65' 1021 3060 -1.271.1 Necodymium Hecque (238) 92 U 51°64 78' 3816 -1.271.2 Uranium		62Sm 4f6e' 1771 1791 -1 2/1-1 Samarium Casapea (239) 94 P U 977' 641 3340 12/1-2 Piutonium	151.964 63 Eu 4f 6a' 822 1597 -1.2/1.0 Europlum Euponne (243), 95 Am 5f 7a' 996 2607 -1.1/1.2 Americkum Auspruse	76/725 64Gd 475d'6s' 1312 3250 -1.2/1.1 Gedelinium Fahorium (247) 96 C m 5/6d'7s' 3110 12/1.2 Curium	158.92534 65 Tb 476s' 1356 3123 -1.2/1.1 Terblum Tepfica (247) 97 Bk 6/7s' 1050 28530 -1.1/1.2 Berkellum	162.50 66 Dy 4°56' 1409 2562 -1.2/1.1 Dysprosium Avenposes (252) 98 Cf 5°7'' 900 1227 1.2/1.2	Умунграй 104-03032 67 НО 41°04" 1474 2800 -1-2/1.1 Нобеліцея Гольмей (201) 99 ES 50°74" 800 1.34- Emsteinium	167.26 68 Er 4f*8s* 1529 2863 -1.271.1 Erbium 3p6se (257) 100 Fm 5f*7s*	Me 2004 168.03421 69 Tm 41"86" 1545 -1.271.1 Thusbarn Tynesk (2560) 101 Md Sf"7x" 1.2/1.2 Mendelevium Mengapeess	70Yb 47'66' 819 1193 -1.27'.1 Ytterbliss (259) 102 NO 51'72' 1.36' Nobelium	71Lu 41°5d'6s' 1063 3302 -1.2 /1.1 Lutetium Rioreupes (200) 103 Lr 61°6d'7s' 1.34- Lewrenchum Rioppencilum	

Электронное строение атома и периодичность свойств химических элементов

- 1. Номер периода = числу энергетических уровней в атоме
- Порядковый номер элемента = количеству электронов = заряду ядра атома
- 3. Длина периода определяется числом электронов, необходимых для завершения соответствующих энергетических подуровней
- 4. В коротких периодах, начале и конце длинных периодов наблюдается увеличение числа электронов на внешнем уровне
- 5. В длинных периодах происходит заполнение внутренних электронных оболочек в атомах переходных металлов
- 6. Электронных конфигурации элементов в группе аналогичны, что приводит к сходству физических и химических свойств

• I A: Li, Na, K, Rb, Cs, Fr [] ns¹ щелочные металлы • II A: Be, Mg, Ca, Sr, Ba, Ra [] ns² щелочноземельные металлы • III A: B, Al, Ga, In, Tl $[] ns^2np^1$ • IV A: C, Si, Ge, Sn, Pb $[] ns^2np^2$ • V A: N, P, As, Sb, Bi 15) [] ns^2np^3 пниктогены • VI A: O, S, Se, Te, Po [] ns²np⁴ халькогены

- VII A: F, Cl, Br, I, At
- 17 [] ns²np⁵ галогены
- O: He, Ne, Ar, Kr, Xe, Rn
- 1s² инертные газы [] ns²np⁶
 - 3d элементы (Sc \rightarrow Zn)
 - 4d элементы (Y \rightarrow Cd)
 - 5d элементы (La \rightarrow Hg)
 - 6d элементы (Ac, Th, Lr \rightarrow Mt)
 - 4f элементы (Ce \rightarrow Lu)
 - 5f элементы (Pa \rightarrow No)

Число главных подгрупп = максимальное число s + p электронов = 8

Число переходных элементов = максимальное число d электронов = 10

$$_{21}$$
Sc $\rightarrow _{30}$ Zn
 $_{39}$ Y $\rightarrow _{48}$ Cd
 $_{57}$ La и $_{72}$ Hf $\rightarrow _{80}$ Hg

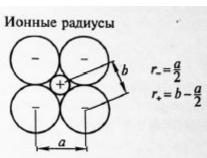
Число лантаноидов = максимальное число f электронов = 14

Электронные аналоги – атомы и ионы с однотипным распределением внешних электронов

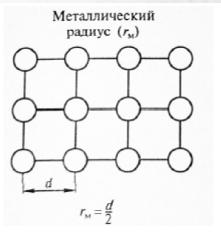
Li 1s²2s¹ и Na 1s²2s²2p⁶3s¹

Характеристики атомов

• АТОМНЫЙ РАДИУС

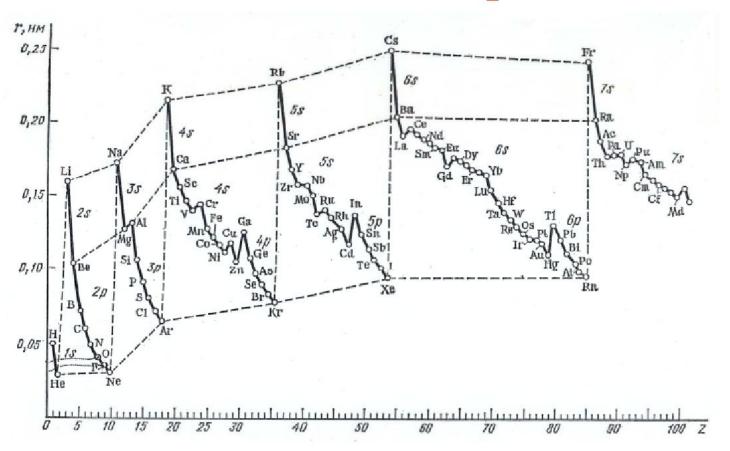

- Орбитальный радиус (r_{op6}) – расстояние от ядра до максимума радиальной электронной плотности последнего энергетического уровня (наибольшие r_{op6} – щелочные и щелочно-земельные металлы, наименьшие r_{op6} –

галогены и инертные газы)

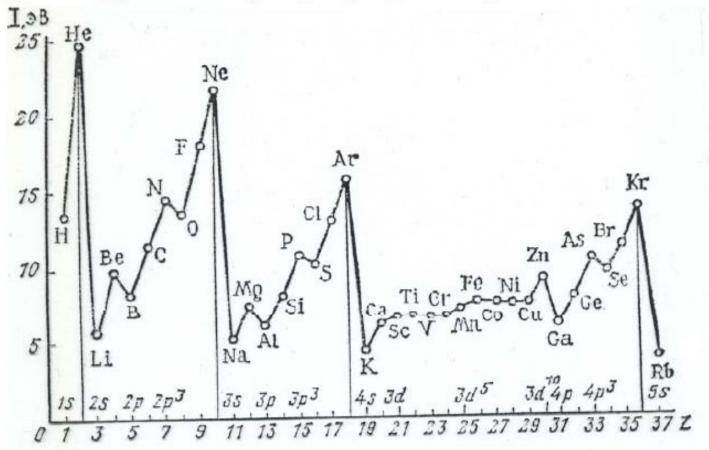

- Ковалентный радиус (r_k) – половина длины одинарной ковалентной связи между атомами данного элемента (в том числе для атомов, образующих кратные связи)

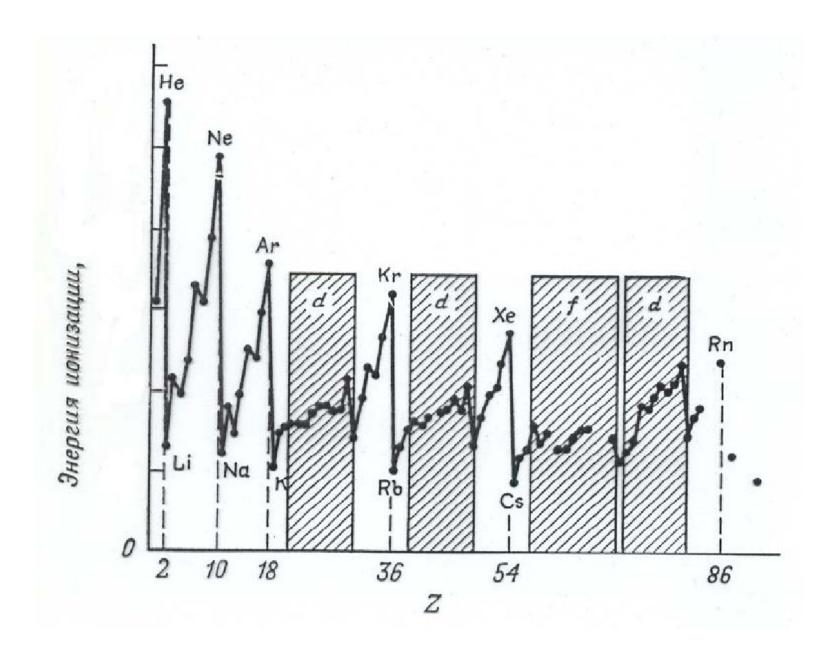
- Металлический радиус (r_м) –половина межъядерного расстояния соседних атомов в плотноупакованной кристаллической решетке металла

- Ионный радиус (r, r) – считают, что расстояние между ядрами соседних катиона и аниона равно сумме их ионных радиусов



- Ван-дер-ваальсов радиус $(r_{_{\rm B}})$ – кратчайшее расстояние между атомами, не образующими химической связи




Зависимость орбитальных радиусов атомов от атомного номера элемента

• Потенциал ионизации

$$\begin{split} A_{\text{ras}} &= A^{+}_{\text{ ras}} + e^{\text{-}} & I_{1} \\ A^{+}_{\text{ ras}} &= A^{2+}_{\text{ ras}} + e^{\text{-}} & I_{2} & I_{1} \!\! < I_{2} \!\! < I_{3} \!\! < \dots < \!\! I_{n} \end{split}$$

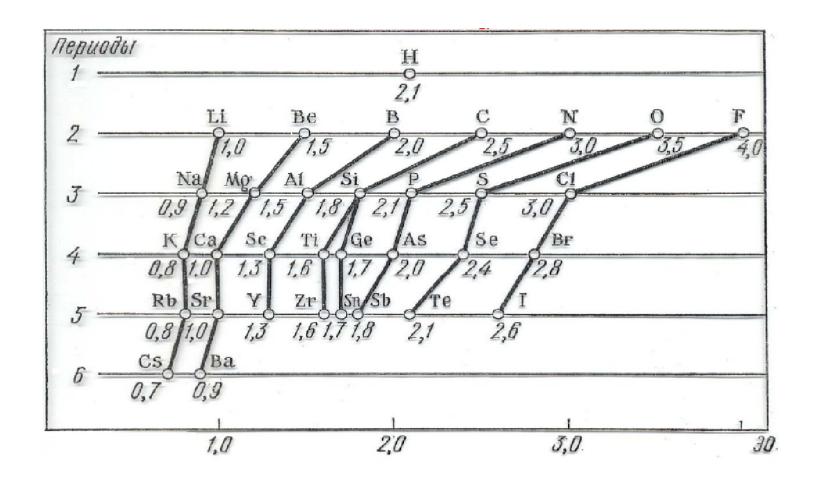
Сродство к электрону A_е

$$A_{ra3} + e^{-} = A_{ra3} \qquad A_{e}$$

Магнитный момент µ_{эфф}

$$\mu_{\theta\phi\phi} = 2\sqrt{S(S+1)} = \sqrt{n(n+2)}$$

Электроотрицательность ҳ

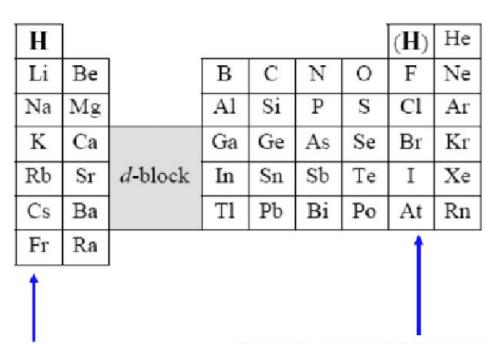

Мера смещения электронной плотности при взаимодействии с другим атомом.

Шкалы: Полинга χ_P , Олреда — Рохова χ_{AR} , Малликена χ_M

$$\chi_M = \frac{1}{2} \left(I_1 + A_e \right)$$

H																
2.1	Э.	пеі	KT	000	T) III	Įa7	гел	Ы	100	TI	[3]	Ten	иеі	HT()B
Li	Be											В	C	N	0	F
1.0	1.5											2.0	2.5	3.1	3.5	4.1
Na	Mg											Al	Si	P	S	Cl
1.0	1.3											1.5	2.5	2.1	2.4	2.9
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.9	1.1	1.2	1.3	1.5	1.6	1.6	1.7	1.7	1.8	1.8	1.7	1.8	2.0	2.2	2.5	2.8
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.9	1.0	1.1	1.2	1.3	1.3	1.4	1.4	1.4	1.4	1.4	1.5	1.5	1.7	1.8	2.0	2.2
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At
0.9	0.9	1.1	1.2	1.4	1.5	1.5	1.5	1.6	1.5	1.4	1.5	1.5	1.6	1.7	1.8	2.0
Fr	Ra	Ac		9 8							2 - 2 9					
0.9	0.9	1.0														

Изменение относительной электроотрицательности в периодах



Водород – особый элемент

Простейшее электронное строение: 1s1

Особое положение водорода в ПС

1 группа: ион H+ аналогичен катионам щелочных металлов – нет электронов на валентном уровне

17 группа: ион Н- аналогичен анионам галогенов – оболочка инертного газа

13 14 15 16 17 18

Элементы-неметаллы

1 2	1	3	14	15	16	17	18
							Article Section

Н							(H)	He
Li	Be		В	C	N	O	F	Ne
Na	Mg		Al	Si	P	S	Cl	Ar
K	Ca		Ga	Ge	As	Se	Br	Kr
Rb	Sr	d-block	In	Sn	Sb	Te	I	Xe
Cs	Ba		Tl	Pb	Bi	Po	At	Rn
Fr	Ra							

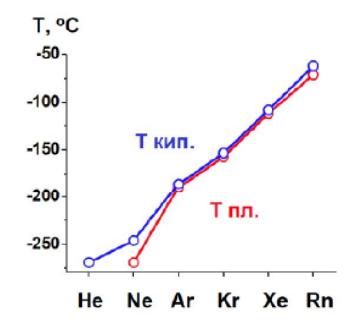
Всего 25 элементовнеметаллов, из них 3 радиоактивны

- 1. Число валентных е⁻: n=N-10
- 2. Электроотрицательность увеличивается слева направо и снизу вверх
- 3. Основные положительные степени окисления n, n-2
- 4. Основная отрицательная степень окисления —(8—n)

- Молекулярные, слоистые или цепочечные структуры с малыми к.ч.
- Плохо проводят электрический ток
- Обладают малой эластичностью и большой хрупкостью
- Имеют высокие значения электроотрицательности, больше потенциалы ионизации
- Легко образуют анионы, реагируя с металлами
- Не выделяют водород из кислот
- Образуют ковалентные оксиды, обычно с кислотными свойствами
- Образуют молекулярные фториды
- Образуют молекулярные гидриды, обладающие восстановительными свойствами

Благородные газы

Не гелий (солнечный)


Ne неон (новый)

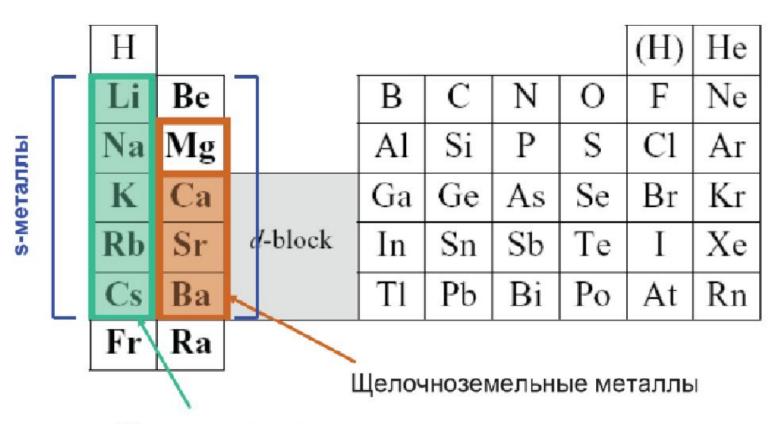
Ar аргон (недеятельный)

Кг криптон (скрытный)

Хе ксенон (чужой)

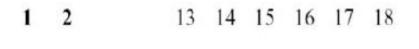
Rn радон (радиоактивный)

- 1. Имеют завершенный электронные оболочки
- 2. Очень нереакционноспособны
- 3. He, Ne, Ar не образуют химических соединений
- 4. Известны производные ксенона в с.о. +2, +4, +6, +8


$$Xe + F_2 = XeF_2$$

$$2XeF_2 + 2H_2O = 2Xe + 4HF + O_2$$

Щелочные и щелочноземельные металлы


1 2

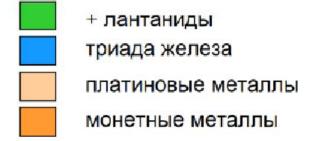
13 14 15 16 17 18

Щелочные металлы

р-Металлы

Н							(H)	He
Li	Be		В	C	N	0	F	Ne
Na	Mg		Al	Si	P	S	Cl	Ar
K	Ca		Ga	Ge	As	Se	Br	Kr
Rb	Sr	d-block	In	Sn	Sb	Te	I	Xe
Cs	Ba	i e	Tl	Pb	Bi	Po	At	Rn
Fr	Ra		_					

р-металлы

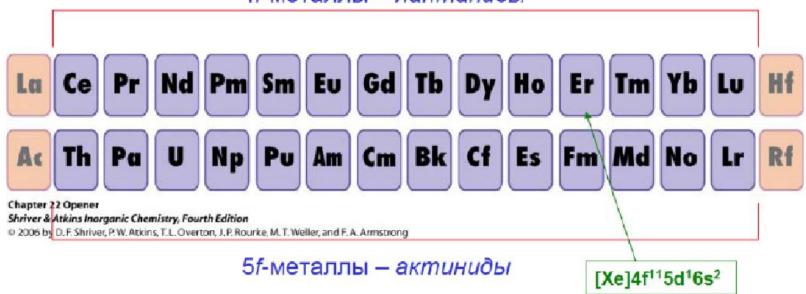


- Электронные конфигурации, как у неметаллов – незавершенный р-подуровень
- 2. Легкоплавкие металлы
- 3. Малые значения 1,
- 4. Устойчивы положительные степени окисления +n и +(n-2)
- 5. Вниз по подгруппе увеличивается стабильность с.о. +(n - 2)
- 6. Химическая активность меньше, чем у *s*-металлов

d-Металлы

3 4 5 6 7 8 9 10 11 12

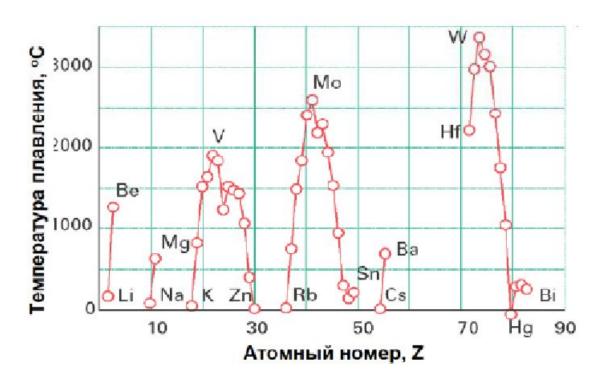
1 ряд	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn
2 ряд	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
3 ряд	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg



Изменение электронной конфигурации:

от [Ng]ns²(n-1)d¹ до [Ng]ns²(n-1)d¹⁰

f-металлы


4f-металлы – лантаниды

- 1. Заполняется f-подуровень n-2 периода
- 2. Лантаниды: степени окисления +3 для всех элементов, а также Се⁺⁴, Eu²⁺
- 3. Лантаниды: радиус уменьшается от La до Lu (*пантанидное сжатие*)
- 4. Актиниды: химически очень разнообразны, с.о. от +2 до +7
- Все актиниды, а также Рт радиоактивны
- 6. Для всех f-элементов характерны высокие координационные числа

Особенности элементов-металлов

- 1. Широкий диапазон твердости и пластичности
- 2. Широкий диапазон температур плавления

- 3. Различная реакционная способность
- Различная электроотрицательность, но χ ≤ 2.
- 5. Различная удельная проводимость, но dσ/dT < 0