Аммиак.

Вариант № 1

Вариант № 2

1) Напишите формулы веществ:

Сульфат железа (II), фторид кальция, нитрат хрома (III), сульфид магния, оксид свинца (II).

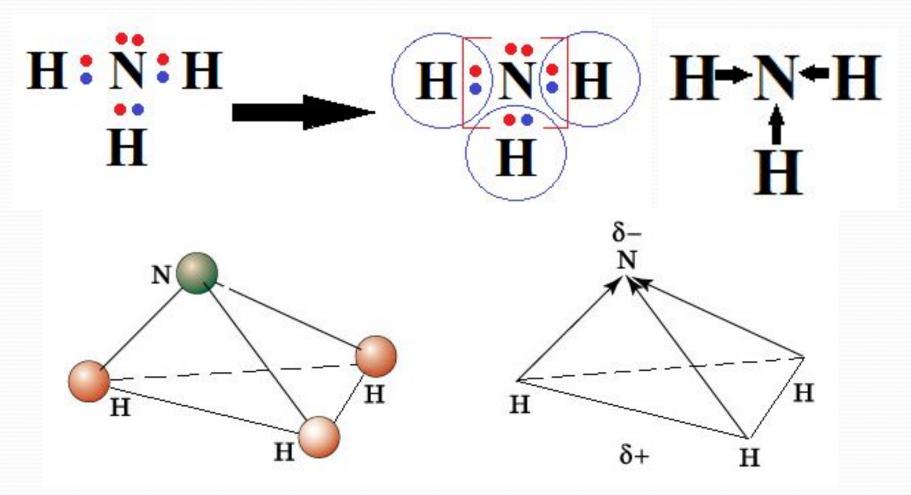
2) Назовите вещества, к какому классу соединений они относятся? CH₂COONa, K₂O, H₂SiO₃, KOH,

Ni₃(PO₄)₂. 3) Напишите уравнения реакций: 1) Напишите формулы веществ:

Сульфит меди, нитрат железа (III), хлорид свинца (IV),

бромид алюминия, гидроксид никеля.

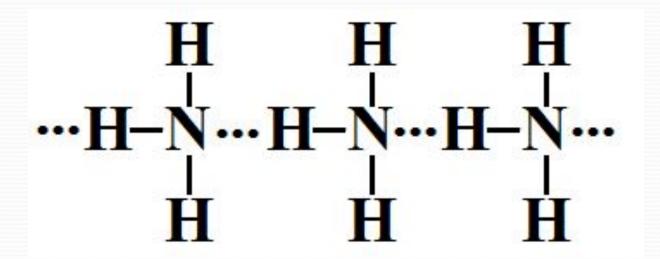
2) Назовите вещества, к какому классу соединений они относятся?


CH₂COONa, K₂O, H₂SiO₃, KOH, H₂CO₃, Mg(OH)₂, Na₂SiO₃, Ni₃(PO₄)₂. FeCl₃, CaO.

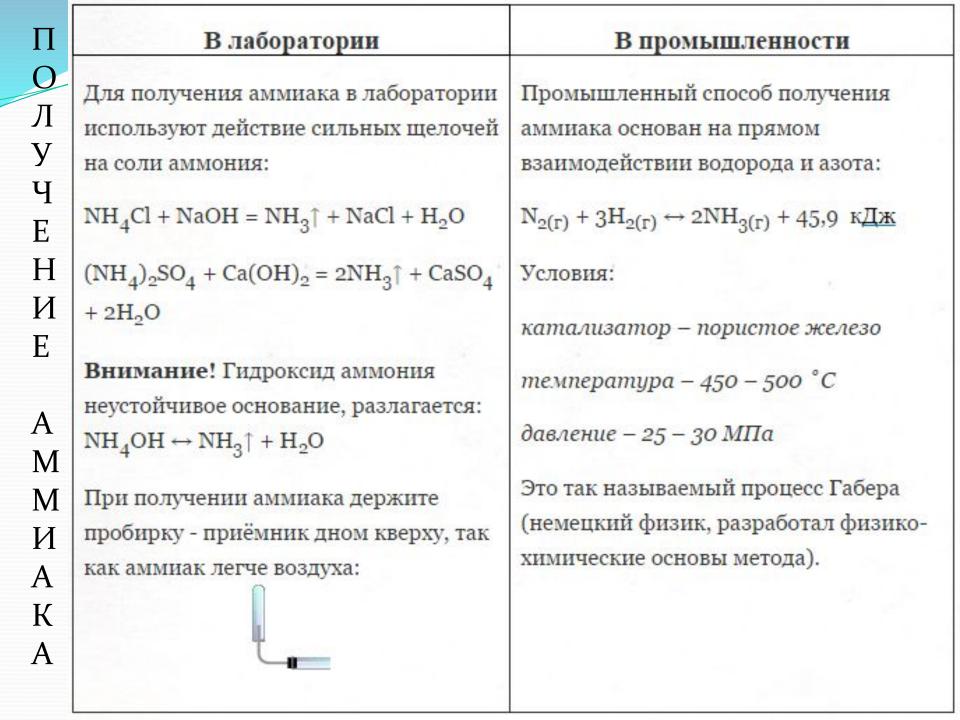
3) Напишите уравнения реакций:

 $S \rightarrow X \rightarrow H_2SO_3$

 $SO_3 \rightarrow X \rightarrow K_2SO_4$


Строение молекулы аммиака

Связь ковалентная полярная


Водородная связь -

 Это химическая связь между атомами водорода одной молекулы и атомами очень электроотрицательных элементов (F, O, N), имеющих неподеленные электронные пары, другой молекулы.

Физические свойства аммиака:

При нормальных условиях — бесцветный газ с резким характерным запахом (запах нашатырного спирта), почти вдвое легче воздуха, ядовит. Растворимость NH₃ в воде чрезвычайно велика — около 1200 объёмов (при о °С) или 700 объёмов (при 20 °С) в объёме воды.

аммиака:

- - 1. <u>Горение аммиака</u> (при нагревании)

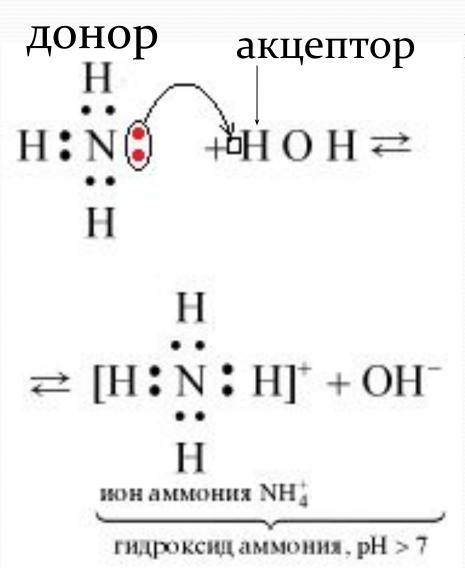
$$4NH_{3} + 3O_{2} \rightarrow 2N_{2} + 6H_{2}O$$
 2. Каталитическое окисление аммиака

2. Каталитическое окисление аммиака (катализатор Pt – Rh, температура)

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

3. с оксидами металлов

$$2 NH_3 + 3CuO = 3Cu + N_2 + 3 H_2O$$


4. с сильными окислителями

$$2NH_{3} + 3Cl_{2} = N_{2} + 6HCl$$
 (при нагревании)

- 5. аммиак непрочное соединение, при нагревании разлагается
- $2NH_3 \leftrightarrow N_2 + 3H_2$
- 6. Реакции без изменения степени окисления атома азота (присоединение Образование иона аммония NH₄⁺ по донорно-акцепторному механизму)

Образование ибна

аммония:

Механизм образования ковалентной полярной связи, которая возникает не в результате обобществления неспаренных электронов, а благодаря свободной электронной паре, имеющейся у одного из атомов, называют донорноакцепторным.

Применение аммиака:

Домашнее задание

§ 25, № 7, 8, 9, c. 152