Лекция № 3. Бензины. Основные требования к физико- химическим свойствам бензинов. Автомобильные бензины. Авиационные бензины. Антидетонационные присадки.

Бензины

- Бензины являются основным топливом для поршневых двигателей внутреннего сгорания с искровым или принудительным зажиганием рабочей смеси.
- В зависимости от назначения их разделяют на автомобильные и авиационные.
- П Несмотря на различия в условиях применения автомобильные и авиационные бензины характеризуются в основном общими показателями качества, определяющими их физико- химические и эксплуатационные свойства.

Современные автомобильные и авиационные бензины должны удовлетворять ряду требований, обеспечивающих экономичную и надежную работу двигателя, и требованиям эксплуатации:

- иметь хорошую испаряемость, позволяющую получить однородную топливо воздушную смесь оптимального состава при любых температурах;
- иметь групповой углеводородный состав,
 обеспечивающий устойчивый, бездетонационный
 процесс сгорания на всех режимах работы двигателя;
- не изменять своего состава и свойств при длительном хранении и не оказывать вредного влияния на детали топливной системы, резервуары, резинотехнические изделия и др.
- □ экологические свойства бензинов

Свойства

- Детонационная стойкость. Этот показатель характеризует способность автомобильных и авиационных бензинов противостоять самовоспламенению при сжатии.
- □ Высокая детонационная стойкость топлив обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя.
- Процесс горения топлива в двигателе носит радикальный характер.
- При сжатии рабочей смеси температура и давление повышаются и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси.
- □ Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем их взрывной распад.

- □ При высокой концентрации перекисных соединений происходит тепловой взрыв, который вызывает самовоспламенение топлива.
- □ Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива, к так называемому детонационному сгоранию.
- □ Детонация вызывает перегрев, повышенный износ или даже местные разрушения двигателя и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа.
- На возникновение детонации оказывает влияние состав применяемого бензина и конструктивные особенности двигателя. (степень сжатия, диаметр цилиндра, форма камеры сгорания, число оборотов коленчатого вала, угол опережения зажигания и др.).

- Показателем детонационной стойкости автомобильных и авиационных бензинов является октановое число, показывающее содержание изооктана (в % объемных) в смеси с н-гептаном, которая по детонационной стойкости эквивалентна топливу, испытуемому в стандартных условиях.
- □ В лабораторных условиях октановое число автомобильных и авиационных бензинов и их компонентов определяют на одноцилиндровых моторных установках УИТ-85 или УИТ-65.
- □ Склонность исследуемого топлива к детонации оценивается сравнением его с эталонным топливом, детонационная стойкость которого известна. Октановое число на установках определяется двумя методами: моторным (по ГОСТ 511-82) и исследовательским (по ГОСТ 8226-82).

- Октановое число бензина, найденное по исследовательскому методу, как правило, выше октанового числа, определенного моторным методом. Разницу между двумя методами называют «чувствительностью».
- □ Для авиационных бензинов нормируется октановое число, определенное только моторным методом, для автомобильных бензинов, за исключением А-76, определяются и нормируются октановые числа, определенные двумя методами.
- □ Важным показателем детонационной стойкости авиационных бензинов является сортность на богатой смеси, которую определяют при испытании на стандартной одноцилиндровой моторной установке ИТ9-1 (ГОСТ 3338—68).

- □ Сортность топлива численно равна сортности такого эталонного топлива, которое при испытании на одноцилиндровом двигателе в стандартных условиях на режиме начальной детонации имеет одинаковое с испытуемым топливом значение среднего индикаторного давления.
- Чем выше сортность топлива, тем выше его детонационная стойкость на богатой смеси в условиях работы авиационного двигателя.
- □ При маркировке авиационных бензинов в числителе дроби указывается октановое число по моторному методу, а в знаменателе сортность на богатой смеси.

Детонационная стойкость (ДС) автомобильных и авиационных бензинов определяется их углеводородным составом.

- наименьшей детонационной стойкостью обладают алканы нормального строения, наивысшей ароматические углеводороды. ДС цикланов выше, чем у алканов, но ниже, чем у аренов с тем же числом атомов углерода в молекуле.
- ДС у алканов нормального строения резко снижается с увеличением их молекулярной массы.
- **ДС изопарафинов** значительно выше, чем у алканов нормального строения. увеличение степени разветвленности молекулы, компактное и симметричное расположение метальных групп и приближение их к центру молекулы способствует повышению ДС изопарафинов.

- Олефиновые углеводороды обладают более высокой ДС по сравнению с алканами с тем же числом атомов углерода. Влияние строения алкенов на их ДС подчиняется тем же закономерностям, что и у алканов. Повышению ДС алкена способствует расположение двойной связи в его молекуле ближе к центру. Среди диолефинов более высокие ДС имеют углеводороды с сопряженным расположением двойных связей.
- Наличие и удлинение боковых цепей нормального строения у цикланов приводит к снижению их ДС. Разветвление боковых цепей и увеличение их числа повышают ДС нафтенов.
- ДС аренов, в отличие от других классов углеводородов, не понижается, а наоборот, несколько повышается с увеличением числа углеродных атомов. Их ДС улучшается при уменьшении степени разветвленности и симметричности ее расположения, а также наличии двойных связей в алкильных группах.

- Пучшими компонентами высокооктановых авиа- и автобензинов являются изопарафины и до определенного предела ароматические углеводороды (чрезмерно высокое содержание аренов приводит к ухудшению других показателей качества бензинов, таких, как токсичность, нагарообразование и др.).
- Антидетонационные свойства бензинов, получаемых различными технологическими процессами, определяются входящими в их состав углеводородами.
- Самую низкую детонационную стойкость имеют бензины прямой перегонки, состоящие, в основном, из парафиновых углеводородов нормального строения, причем она снижается с повышением температуры конца кипения.
- □ Октановые числа, определяемые по моторному метолу, прямогонных фракций, выкипающих до 180 °C, обычно составляют 40—50 ед.

- Детонационная стойкость фракций с температурой начала кипения 85 °С несколько выше 65—70 ед. Исключение составляют прямогонные бензины, получаемые из нефтей нафтенового основания (сахалинские, азербайджанские и др.), их октановые числа достигают 71-73 ед. Однако ресурсы этих нефтей весьма ограничены.
- Бензины термических процессов (крекинга, коксования) содержат до 60 % олефиновых углеводородов и по детонационной стойкости превосходят прямогонные бензины: ОЧИ = 68-75, ОЧМ = 62-69.
- Бензины каталитического крекинга помимо олефиновых углеводородов содержат ароматические и изопарафиновые углеводороды. Их детонационная стойкость выше, чем бензинов, получаемых термическими процессами.

- П Наиболее эффективным и дешевым, но экологически не выгодным способом повышения ДС товарных бензинов является введение антидетонационных присадок антидетонаторов.
- Антидетонационными свойствами обладают соединения свинца, олова, таллия, висмута, селена, теллура, марганца, железа, кобальта, никеля, меди, хрома и ряда других металлов. Как антидетонаторы были изучены алкилы металлов, карбонилы, внутрикомплексные соли, соединения «сэндвичевого» строения.
- □ Долгое время в качестве антидетанаторов с выской эффективность использовался тетраэтилсвинец. Однако весьма существенный его недостаток это токсичность.

Метилтретбутиловый эфир в настоящее время считается самым перспективным антидетонатором.

ТЕПЛОТА СГОРАНИЯ

Этот показатель во многом определяет мощностные и экономические показатели работы двигателя. Он особенно важен для авиационных бензинов, так как оказывает влияние на удельный расход топлива и на дальность полета самолета. Чем выше теплота сгорания, тем меньше удельный расход топлива и больше дальность полета самолета при одном и том же объеме топливных баков.

- Для авиационных бензинов регламентируется низшая теплота сгорания.
- Теплота сгорания зависит от углеводородного состава бензинов, а для различных углеводородов она, в свою очередь, определяется соотношением углерод: водород.
 Чем выше это соотношение, тем ниже теплота сгорания.

- П Наибольшей теплотой сгорания обладают парафиновые углеводороды и соответственно бензины прямой перегонки и алкилбензин, наименьшей ароматические углеводороды и содержащие их бензины каталитического риформинга.
- Теплота сгорания зкспериментально определяется калориметрически.

ХИМИЧЕСКАЯ СТАБИЛЬНОСТЬ.

- Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впускной системы двигателя.
- Химические изменения в бензине, происходящие в условиях транспортирования или хранения, связаны с окислеиием входящих в его состав углеводородов.

- Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов.
- При окислении бензинов происходит накопление в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления.
- На начальных стадиях окисления содержание в бензине смолистых веществ невелико, и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается, и снижается их растворимость в бензине.
- П Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолистые вещества могут выпадать из топлива, образуя отложения в резервуарах, трубопроводах и др.

- Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания.
- Окисление топлив представляет собой сложный, многостадийный свободнорадикальный процесс, происходящий в присутствии кислорода воздуха.
- Скорость реакции окисления углеводородов резко возрастает с повышением температуры. Контакт с металлом оказывает каталитическое воздействие на процесс окисления.
- Пизкую химическую стабильность имеют олефиновые углеводороды, особенно диолефины с сопряженными двойными связями. Высокой реакционной способностью обладают также ароматические углеводороды с двойной связью в боковой цепи. Наиболее устойчивы к окислению парафиновые углеводороды нормального строения и ароматические углеводороды.

- Причем реакционноспособные олефиновые или алкенароматические углеводороды могут инициировать процесс окисления химически стабильных углеводородов.
- Химическую стабильность товарных бензинов и их компонентов оценивают стандартными методами путем ускоренного окисления при температуре 100 °C и давлении кислорода по ГОСТ 4039-88.
- По (ГОСТ 22054—76) определяется показатель «сумма продуктов окисления». Этот метод используется в основном для исследовательских целей и при квалификационных испытаниях.
- Химическая стабильность бензинов в определенной степени может быть охарактеризована йодным числом, которое является показателем наличия в бензине непредельных углеводородов. Йодное число нормируется для авиационных бензинов, так как вовлечение в их состав нестабильных

бензинов непоплетимо

СКЛОННОСТЬ К ОБРАЗОВАНИЮ ОТЛОЖЕНИЙ И НАГАРООБРАЗОВАНИЮ.

- Применение автомобильных бензинов, особенно этилированных, сопровождается образованием отложений во впускной системе двигателя, в топливном баке, на впускных клапанах и поршневых кольцах, а также нагара в камере сгорания.
- Наиболее интенсивное образование отложений происходит на деталях карбюратора: на дроссельной заслонке и вблизи нее, в воздушном жиклере и жиклере холостого хода.
- Образование отложений на указанных деталях приводит к нарушению регулировки карбюратора, уменьшению мощности и ухудшению экономичности работы двигателя, увеличению токсичности отработавших газов.
- Образование отложений в топливной системе частично зависит от содержания в бензинах смолистых веществ, нестабильных углеводородов, неуглеводородных примесей, от фракционного и группового состава, которые определяют «моющие свойства» бензина.

- П Наиболее эффективным способом борьбы с образованием отложений во впускной системе двигателя является применение специальных моющих или многофункциональных присадок Такие присадки широко применяют за рубежом.
- □ ЭКСПЛУАТАЦИОННЫЕ ТРЕБОВАНИЯ.
- Автомобильные и авиационные бензины должны быть химически нейтральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания - коррозию деталей двигателя.
- Коррозионная активность бензинов и продуктов их сгорания зависит от содержания общей и меркаптановой серы, кислотности содержания водорастворимых кислот и щелочей, присутствия воды.

- Эти показатели нормируются в нормативнотехнической документации на бензины. Бензин должен выдерживать испытание на медной пластинке.
- При квалификационных испытаниях автомобильных и авиационных бензинов определяется также их коррозионная активность в условиях конденсации воды по ГОСТ 18597-73.
- Эффективным средством зашиты от коррозии топливной аппаратуры является добавление в бензины специальных антикоррозионных или многофункциональных присадок.
- Независимо от компонентного состава бензины, не содержащие спиртов и эфиров, имеют высокие низкотемпературные свойства введение в состав бензинов спиртов и эфиров снижает их температуру помутнения.

- В нормативно-технической документации на авиационные бензины нормируется температура начала кристаллизации.
- □ Топливо не должно образовывать кристаллов льда, которые забивают топливный фильтр при полетах в условиях низких температур, поэтому температура начала кристаллизации авиабензинов должна быть ниже -60 °C.

ЭКОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ

- Среди продуктов сгорания неэтилированных бензинов наибольшую опасность представляют оксид и диоксид углерода, оксиды азота, оксиды серы, углеводороды и твердые частицы.
- Токсичность неэтилированных бензинов и продуктов их сгорания в основном определяется содержанием в них ароматических углеводородов, особенно бензола, олефиновых углеводородов и серы.

- Ароматические углеводороды более токсичны по сравнению с парафиновыми углеводородами.
- □ Если парафины в соответствии с ГОСТ 12.1.005—88 относятся к 4-му классу опасности, то бензол относится ко 2-му классу, а толуол к 3-му.
- При их сгорании образуются полициклические ароматические углеводороды (бензпирены), обладающие канцерогенными свойствами.
- Чем выше содержание ароматических углеводородов в бензине, тем выше температура его сгорания и содержание оксидов азота в отработавших газах.
- Песторевшие углеводороды, содержащиеся в отработавших газах, в воздушной среде под воздействием различных факторов (повышенная влажность, солнечный свет и пр.) способствуют образованию стойких аэрозолей, получивших название «смог».

- Наибольшей фотохимической активностью обладают продукты сгорания олефиновых и ароматических углеводородов.
- Высокое содержание серы в бензине увеличивает выбросы оксидов серы, которые губительно действуют на здоровье человека, животный и растительный мир, конструкционные материалы. При использовании бензинов с кислородсодержащими добавками содержание токсичных продуктов в отработавших газах несколько снижается.
- Одним из путей снижения токсичных выбросов автотранспорта
- является введение моющих присадок в автобензины. Путем поддержания в чистоте топливном системы моюшие присадки способствуют снижению содержания оксидов углерода и несгоревших углеводородов в отработавших газах. На ряде нефтеперерабатывающих предприятий осуществляется организация производства автомобильных бензинов с моющими присадками и с улучшенными экологическими свойствами.

Характеристика автомобильных бензинов

- □ На казахстанском рынке бензинов в основном предусматривает четыре маркиавтобензинов:, АИ-80, АИ-92, АИ-95 и АИ-98.
- Для первых двух марок цифры указывают октановые числа, определяемые исследовательскому метожу.
- □ В связи с увеличением доли легкового транспорта в общем объеме автомобильного парка наблюдается заметная тенденция снижения потребности в низкооктановых бензинах и увеличения потребления высокооктановых.
- □ Наибольшая потребность существует в бензине
 АИ-92, который вырабатывается по ТУ 38.001165—97.

Показатели	A-80	A-92	A-96	АИ-98
Плотность, кг/м³, при температуре: 20°C, не более	755	770	770	Не норми- руется. Определе- ние обяза- тельно.
15 °C	Не нормируется			1-
Детонационная стойкость, октановое число, не менее: исследовательский метод моторный метод	80	92	96	98
	76	83	85	88
Массовое содержание свинца, г/дм ³ , не более: бензин этилированный бензин неэтилированный	0,15	0,15	0,15	-
	0,013	0,013	0,013	0,013
Фракционный состав: температура начала перегонки бензина, °С, не ниже перегоняется при температуре, °С, не выше:	35	35	35	•
10 %	70 ·	75	75	75
50 %	1 20	120	120	120
90 %	190	190	190	190
температура конца кипения, °С, не выше остаток в колбе, %, не более остаток и потери, %, не более	215	215	215	215
	1,5	1,5	1,5	1,5
	4,0	4,0	4,0	4,0

Давление насыщенных паров бензина, кПа (мм рт. ст.), не более	79,9 (600)	79,9 (600)	79,9 (600)	79,9 (600)
Кислотность, мг КОН/100 см³, не более	3,0	3,0	0,8	3,0
Содержание фактических смол, мг/100 см³, не более	5,0	5,0	5,0	5,0
Индукционный период на месте производства бензина, мин, не менее	600	600	600	600
Массовая доля серы, %, не более	0,05	0,05	0,05	0,1
Цвет	Бесцветный или бледно-желтый			•
Докторская проба	Отрицательная			•
Массовая доля меркаптановой серы, %, не более	0,001	0,001	0,001	-
Содержание бензола, % (об.), не более	21=	-	N=	5,0
Массовая доля МТБЭ, %, не более	n=	-	-	12
		5. 2	See to a	

Примечание. Для бензинов всех марок: испытание на медной пластинке — выдерживает, содержание водорастворимых кислот и щелочей, механических примесей и воды — отсутствие.

АВИАЦИОННЫЕ БЕНЗИНЫ

- □ Авиационные бензины предназначены для применения в поршневых авиационных двигателях. В отличие от автомобильных двигателей, в авиационных используется в большинстве случаев принудительный впрыск топлива во впускную систему, что определяет некоторые особенности авиационных бензинов по сравнению с автомобильными.
- □ Более высокие требования к качеству авиационных бензинов определяются также жесткими условиями их применения. ГОСТ 1012-72 предусматривает две марки авиационных бензинов: Б-91/115 и Б-95/130.
- □ Марка авиабензина означает его октановое число по моторному методу, указываемое в числителе, и сортность на богатой смеси в знаменателе дроби.

- □ Бензин Б-91/115 предназначен для эксплуатации двигателей АШ-62ир, АИ-26В, М-14Б, М-14П и М-14В-26, а Б-95/130 двигателей АШ-82Т и АШ-82В.
- В течение 1988-1992 гг. проведен большой комплекс исследований и испытаний, в результате чего разработан единый бензин Б-92 без нормирования показателя «сортность на богатой смеси», вырабатываемый по ТУ 38,401-58-47—92.
- Как показали испытания, бензин Б-92 может применяться взамен бензина Б-91/115 в двигателях всех типов. Использование авиабензина Б-92 без нормирования показателя сортности позволяет наряду с обеспечением нормальной работы двигателей на всех режимах значительно расширить ресурсы авиабензинов и снизить содержание в них токсичного тетраэтилсвинца.

Показатели	5-95/130 FOCT 1012- 72	5-91/115 FOCT 1012- 72	5-92 TY 38.401- 58-47-92	5-70 TY 38. 101913-82
Содержание тетраэтилсвинца, г/1 кг бензина, не более	3,1	2,5	2,0	-
Детонационная стойкость: октановое число по моторному методу,				
не менее	95	91	91,5	70
сортность на богатой смеси, не менее	130	115	-	•
Удельная теплота сгорания низшая,	42947·10 ³	42947·10 ³	42737·10 ³	•
Дж/кг (ккал/кг), не менее	(10250)	(10250)	(10200)	
Фракционный состав:	1			
температура начала перегонки, °С, не ниже перегоняется при температуре, °С, не выше:	40	40	40	40
10 %	82	82	82	88
50 %	105	105	105	105
90 %	145	145	145	145
97,5 %	180	180	180	180
остаток, %, не более	1,5	1,5	1,5	1,5
Давление насыщенных паров, Па	33325-45422	29326-47988	29326-47988	47988
Кислотность, мг КОН/100 см³, не более	0,3	0,3	1,0	1,0
Температура начала кристаллизации, °С, не выше	-60	-60	-60	-60

Йодное число, г йода/100 г бензина, не более Массовая доля ароматических углеводородов, %, не более	6,0 35	2,0 35	2,0 Не нормиру- ется. Опре- деление обяза- тельно	2,0 12-20
Содержание фактических смол, мг/100 см ³ бензина, не бопее	4,0	3,0	3,0	2,0
Массовая доля серы, %, не болве	0,03	0,03	0,05	0,05
Цвет	Желтый	Зеленый	Зеленый	Бесцветный
Массовая доля параоксидифениламина, %	0,002-0,005	0,002-0,005	-	-
Период стабильности, ч, не менев	12	12	_ 8	-

Примечания. 1. Для бвнзинов всех марок: испытание на медной пластинке — выдерживает; содержание водорастворимых кислот и щелочей, механических примесей и воды — отсутствие; прозрачность — прозрачный; плотность при 20 °C, кг/м³ — не нормируется, определение обязательно.

- 2. Для авиационного бензина марки Б-91/115, получаемого на основе компонента каталитического крекинга, устанавпиваются:
 - а) йодное число 10 г йода/100 г бензина.
 - б) содержание фактических смол не более 4 мг/100 см³ бензина.

- 3. Для авиационных бензинов марок Б-95/130 и Б-91/115, выработанных из бакинских нефтей, допускается содержание параоксидифениламина 0,004-0,010 %, а на базе бензинов каталитического крекинга не менее 0,004 %.
- 4. С 1 мая по 1 октября нижний предел давления насыщенных паров авиационных бензинов не служит браковочным признаком, за исключением отгружаемых на длительное хранение.
- 5. Для авиационных бензинов, сдаваемых после длительного хранения (более 2 лет), допускаются отклонения при определении фракционного состава по ГОСТ 2177-82 для температуры перегонки 10 и 50 % на 2 °C и 90 % на 1 °C. Этилированные авиационные бензины после длительного хранения допускается сдавать с периодом стабильности не менее 2 ч.
- 6. Норма по показателю пункта 3 для бензинов с добавлением базового компонента крекинга должна быть не менее 43157-10³ (10300) Дж/кг (ккал/кг).
- 7. По согласованию с потребителями допускается изготовлять авиационные бензины по показателю «период стабильности» с нормой не менее 8 ч.