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C.1 Creation and Annihilation Operators

The name “second quantization” is misleading. This formalism has noth-
ing to do with the further quantizing of quantum mechanics. It is just an
alternative formulation of the usual quantum mechanics, which has turned
out to be very useful for handling the many-body problem. It can be used
for bosons and fermions, and we will give a short introduction and some
important formulae.

We start with a complete orthogonal set of single-particle states |»),
where » stands for a set of quantum numbers, for example, '

(i) space coordinate r, spin s=s, |r, s);
(i) the quantum numbers of an oscillator basis |nljm).

Orthogonality and completeness are expressed as
') =§,,, > pr|=1. (C.1)

(For continuous quantum numbers such as r, the §,,, will mean §(r—r’) and
the sum 3, is to be replaced by [d°r.)
The coordinate representation of the state |») is given by
‘Pv(l)‘-‘%(rl’S|)=<r|’sll”>- (C2)

Starting with this set of single-particle states, we can construct a complete
orthogonal set of totally symmetric N-body wave functions

q)v....v,,,(]"“’N):'gL;P{(pvl(l)“'wv”(N)}’ (C'3)



where the sum runs over all permutations (», ...»,) of the numbers (1...N)
and 9N is a normalization constant.

Any arbitrary, totally symmetric N-body wave function can be repre-
sented in this basis:

¥(1,...,N)= 2 R (C4)

We can also give to each of the smgle-parncle states a number (v=1,2,...)
(in the case of continuous quantum numbers, we must first mtruduce a
finite box) and characterize the wave function ®, », DY the “occupation
numbers” {n,}, which tell how often a particular number v is contained in
the N numbers (»,,...,»,). Obviously, we have

Zn=N (C.5)
and
Py, N)=0, , (1,...,N)
1 1
- . (C.
VN yn,tn,!... ;P{tp,'(l) P (N)}- (C6)

Such a state describes a boson system. In complete analogy, we can
construct totally antisymmetric-basis wave functions

&, \(L,....N)= ﬁ Ssign(P)P (,(1)...9,(N)}).  (CT)

They are called Slater determinants and describe fermion systems. In this
case the numbers n, only take the values 0 or 1, otherwise (C.7) would
vanish identically.




We can now construct a Hilbert space which contains a vacuum (no
particle) |—), all the one-particle states, all the symmetrized (or antisym-
metrized) two-particle states, and so on...

X = (o, Xy, 5. ). (C.8)

The wave functions @, , correspond to basis states |n,,n,,...> in this
Hilbert space, which are characterized by the occupation numbers (occu-
pation number representation), such that

®n)(LeesN)=C1,...,N|ny 1y ... (C9)
These states are orthonormalized ?
(T w0 ol A e £, W, Sy, ATl (o )

First we shall study boson systems and define an “annihilation operator”
B, by

-

Blnj,ny,...,n,,.. =\, |n;,n,...on,— l,...)k." (C.11)

The operator B, lowers the occupation number in the state with the
number » by one. An N-body state goes over into an (N — 1)-body state.



The matrix elements of B, are
e, 50 LB R, . 0, - \/— . _yere ' (C12)
or
il | BBy ), D=y, +1.8, .. 8y (C3)
This is valid for all basis states {n,,n,...|. We therefore find

BY|n,n,,....n,..>=\n+1 |n,n,,...,n+1,..). (C.i4)

B,* “creates” a particle in the state with the number ». Therefore, it is
called a “creation operator in the state ».” It is the Hermitian conjugate
operator to B,.

From this definition we gain the fact that

(B“B'+_B’+B“)|nl,nz,...,n,,...,n“...)
((\/n,-l-l \/r:—\/t;\]n,+l )lnl, it k1, ..)=0 forv+#u,
\(‘/"»“ yn,+1 —Vn, \n, )Inyse.m,,..>  forv=p, (C.15)




and hence get the commutation relations.

|B,.B,* |=B,B*—B,*B,=3,. (C.16)
In the same way, we may show that
(8,.8]=[5,".8,]=0, 1)
The state with the occupation numbers |0,0,0...>=|—) is the vacuum. We
thus have
B,|—>=0  forallw (C.18)
and

Wi Rl vaaBisguae)

' LB )™-> (C19)

Jnl!nz!...n’!... [ ]

The relation (C.11) follows from (C.16) to (C.19), which was our definition
of the operators B,. We can therefore also go in the opposite direction and
start with a set of operators B,,B," which obey boson commutation
relations and construct the many-body Hilbert space from (C.17) and
(C.18).

The operator B,* B, is called the particle-number operator for the state »:

B BNy s vvishsonn D™ v Wy e (C.20)

We now address ourselves to a fermion system. We shall use small Latin
letters a," , g, for the creation and annihilation operators of fermions. Since
n, can only have the values 0 and 1, we may define the action of the



operators as

a,lnl,...,n’=l’.

from which we get

p=|nye,n,=0,...5,  aln,,...,n,=0,...>=0,

af|ny,...,n,=0,..>=|n,...,n,=1,...5  a}|n,...,n=1,..>=0,
(C.22)
and
[a”,a,,*]+ '={a,,q" ) :=a,0"+a'a,=5,, (C23)
(4, =[a} a*], =0,
The vacuum is again given by |—)>=|0,0,...> and we have
a|—>=0  forally, (C.29)

hence

nl,-o

N Y I;LI(a:)""|—>=a,T et |- (C.25)



C.2 Field Operators in the Coordinate Space*

Using the single-particle wave functions ¢, (r, s) in Eq. (C.2) we can define
creation and annihilation operators a*(r, s), a(r, s), which depend on the
coordinates r and s':

a(r,s)= Z ®,(r,8)a,; a*(r,s)= Z @} (r,s5)a} . (C.26)
With Eq. (C.1) we can invert this relation,
=3 f d*ror(r,s)a(r,s), a*= D> f d’r g,(r,s)a*(r,s), (C27)
and gain the commutators

[a(r,s),a*(F,s)], = 2 ?,(r, )@k, s) [ a,,a) |, =68,8(r—r) (C.28)

and
[a(r,s5),a(r,s)], =[a*(r,5),a*(r,s)], =0. (C.29)
We can express the many-body wave function (C.7) by

<1>{,¥,(1,...,1v)=-‘—'<—|a(1v)...a(1)|n,,n2,...n,...> (C.30)

YN



and

|n,,n2,...n,...>=fdl...dNﬁQ{M(l,...,N)aql)...a+(N)|—).

(C31)

C.3 Representation of Operators

Starting from a vacuum |—), we have expressed all states in the many-
body Hilbert space I by creation and annihilation operators a,*, a,. The
same will be done for operators in the following. We have to distinguish
between one- and two-body operators.

A one-body operator as, for example, the kinetic energy or the total
momentum of an N-particle system, is given as the sum of N operators jf
which always act on the coordinate of the particle i:

N
F=3 f. (C.32)
i=1
Its matrix elements in the |») representation are
S =<1 fI", (C.33)

that is,

f9.()= 3 £, 9.0). (C34)



The representation of ¥ in the operators a,",a, is given by

F=3f a‘a,. (C.35)
To show this, we have to prove
S feq,...,N)=<1,...,N|S £, .a}a,|®). (C.36)
i w'

On the Lh.s, from Egs. (C.30), (C.26) and (C.34) up to a factor 1/yN! we
gain

;ﬁ(—|a(N)...a(i)...a(1)|¢>
=2 2 f:«p.,,(N) @ (). 9, (1~ |a,, ...q, |®)

i V-

- 2‘: z.: X 2’ f"‘<p,”(N)...qp,(i)...tp,.(l)<—|a,~...a,||<I>>.
This is identical to wne r.h.s.:
2 2 L,"P.N(N) (P,l(l)< Ia ¥ -ar|ar+ar'|¢>

w' Py

'ZZ 2 f.,.%,(N) % (1X~1a,,...q,...q,|®).



We give next a few examples:
The kinetic energy

f=2i=5 300, (C37)

i

S [dr o2 @9 0 A (e, )

'’

— K
% f d’ra*(r,s)5-a(r,s). (C.38)
The single-particle density (see Appendix D)

N
)= 3 8(r—t). (C39)

i=]

f, is the coordinate operator of the ith particle; r is a number.
)= 3 [d ¢ (F,)0(—1)o (v, )ata, = Sa* (r,s)a(.s).

(C.40)
The particle number

=Sa'a=3 3 [drd7 a0 ¢ 5)a* E@.5)a.s)
- f p(r) d>. (C41)



In the most general case, f will be an integral operator (a “nonlocal”
one-particle operator):

foma)=3 [ fu@mr)ew.s). (C42)

A two-particle operator as, for example, a two-body interaction, is given by
a sum of operators v; which act on the coordinates of the particles i and .

N {
V=3 o, (C.43)
i<j=1

In the most general case, vy will be an integral operator in two variables,
with matrix elements

O = wlo| W)= [d1d2d3dag} ()9} (2)0(1,2,3,9)9,(3)9,(4)

(C.44)
In complete analogy to Eq. (C.35), we can show that V' can be written as
y=1 2 'vp“,,.a:a,,*a,,a“:{ 2 'Bp“,,,a:a,*a,,a“., (C.45)

pop'v o'y e

\ W4

with the antisymmetrized matrix element
'—)p“'v’ - < p}'lol “'v’> - < ’wlvlp,"">' (C'46)



Very often we use local two-body interactions of the form (we neglect spin)
v;=0o(r, ). (C47)
In this case, we can verify Eq. (C.45) immediately with Eq. (C.40):

1S ounatata,a,=—} f dr d’ a*(r)a* (r)o(r, ¥)a(r)a(r)

pop'v’

= g( f d*r d* o(r, ¥)p(r)p(r) — f d*r o(r, r)ﬁ(r))

N
- %( 2 o(r, )~ 2 o(r;, "i)) - > o(r, 1)
isej i i<jm1
(C.48)

C.4 Wick’s Theorem

In practical applications of the second quantization, Wick’s theorem has
turned out to be very useful. It is a rule which allows a very simple
reordering of a set of N-operators @ or a*, which have the property that
the commutator (in the case of bosons) or the anticommutator (in the case
of fermions) of two arbitrarily chosen operators of this set is a number.

We first define the 7T-product (time ordered product) of a product of
operators a(2,), a(t;),a*(z,)... to be the one where the field operators have
been reordered in such a way that the time arguments are increasing from
right to left (an odd permutation gives a minus sign):

T{a(t)a"(t)a(t)a™(te)}=—a(t))a(L)a™(LB)a* (1)  6H>6>4>1,.
(C.49)



In a normal ordered product, the field operators are ordered in such a way
that all creation operators are to the left of all annihilation operators*
(again, an odd permutation gives a minus sign):
N{a,aa,a}=:a,a4a,a' :=—-a'aaa, (C.50)
The contraction 17?/ of two field operators U and V is defined as
Uv=T{UV}—N{UV}. (C.51)
With these definitions, Wick’s Theorem [Wi 50] can be stated as:
T{ UVW...XYZ}=N{UVW...XYZ}+N{U’f/W...XYZ}

+--+ N{UVW..XYZ)+N(UVW..XYZ)
~ — -~

+-+N{UVW...XYZ)}+---. (C.52)

The time ordered product of field operators is therefore equal to their
normal ordered product plus the normal ordered products with one con-
traction (in all possible ways), plus the normal ordered product with two



contractions, and so on. Care has to be taken in the removal of a
contraction out of a normal ordered product, as this can give a minus sign:

N{UVXY}=UVN{XY}; N{UVXY}=—UXN{VY). (C.53)

(For the proof of Wick’s theorem see, e.g., Thouless [Th 61b).)

Wick’s theorem is especially useful for the calculation of ground state
expectation values of time ordered products of field operators (e.g., the
expectation value of particle operators with respect to the quasi-particle
vacuum in Chap. 6). The result is equal to the r.h.s. of (C.52), where all
operators have been contracted in all possible ways.

If there are time-independent field operators, as in (C.45), then the given
order is to be defined as time ordered. The contraction of time-
independent operators is especially simple; for example, we get:

a0t =aa'—N{aa'}=8,. (C.54)
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2.5 The Shell Model Approach to the Many-Body Problem

The single-particle model takes into account the individual nucleons. It
therefore provides a microscopic description of the nucleus. This is cer-
tainly only an approximation of the exact many-body problem. We will
see, however, in the following, that the shell model can be used as a basis
for more elaborate many-body theories, so before we talk about further
details of the model, we want to discuss some general properites of the
single particle model.

The microscopic theory of the nucleus is usually based on the following
three properties.

(i) The nucleus is a quantum mechanical many-body system.
(ii) The velocities in the nucleus are small enough so that one can
neglect relativistic effects [(v/ c)*~1/10].
(i1) The interaction between the nucleons has a two-body character.

A full microscopic theory of the nucleus would then be given by the
solution of the many-body Schrodinger equation

H¥= é—i.&,+ i‘,u(f,j) ¥(l,...,A)= E¥(l,...,4), (2.19)
=1 Im i<}

where i represents all coordinates of the ith nucleon, for instance,
(Ny=(r, s, 1) (2.20)

where #, will be 1 for neutrons and — { for protons. With the assumption
of the nuclear shell model, the above equation reduces to the much simpler
equation
HO‘F-[Zh}‘P 2 ——A+V()}\P =EV¥. (2.21)
f== i=1

The solutions ¥ of Eq. (2.21) are anti-symmetrized products of single-
particle functions, which are eigenfunctions to the single-particle Hamilto-



nian A;: :
iy (1) = €9, (). (2.22)
The functions ¢, provide an orthogonal basis for an occupation number
representation within the framework of second quantization (see Appendix
C). To each level k corresponds a pair of creation and annihilation
operators ;" , a, which create or annihilate particles with wave function
¢. Since nucleons are Fermiions, each level can be occupied only ence,

and the operators g,, a," obey Fermi commutation relations (C. 23).
The shell model Hamiltonian H, has the form

Ho= 2 (kak*ak-
Using the bare vacuum |—) its eigenfunctions can be represented as
=g+ e P
Iq’k,...k,)-ak, "'ak‘| p2

They are Slater determinants

&, (1) ... & (A)
Dt (lyenrsA)m (2.23)
o (1) P, (A4)
with eigénvalues
Ek....k‘-(k,"'”' +e, (2.29)

In the ground state the levels are filled successively according to their
energy (see Fig. 2.6)

[P =a)" ...a}|—>. (2.25)



- - - b e
Thus we have for closed shells the following unique prescription for the
construction of the 4 particle ground state as well as for the A particle
excitation spectrum: Starting with the (1s, ,,) level, one has to occupy each
level |nsljm) with just one particle until all A particles are used up. We
thus obtain an 4 nucleon ground state where all different quantum states
are occupied with just one particle up to the Fermi level (the highest
occupied level); above the Fermi level all levels are unoccupied.

The independent particle picture of the nucleus is different from that in
an atom in the sense that in a nucleus there are rwo different kinds of
particles, the proton and the neutron, whereas in an atom there is only the

b RS >
, 7 empty
E:“_— : ’l levels _
'. \ 7 ied
# \ ] levels |
\J ek

l'ii"é(;

Figure 2.6. Shell model potehtial and Fermi level.
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electron. Protons and neutrons feel different average potentials for two
reasons: ,

(i) Protons also interact via the Coulomb force. One therefore usually
adds the potential of a homogeneously charged sphere

e .
ot o 3 ) LY ]
V()= (2.26)
c 702
-—f— r>R.

Sometimes (see Sec. 2.8), this feature is approximated by using
different potential parameters for protons and neutrons.

(i1) The symmetry energy [see Eq. (1.4)] favors a configuration with an
equal number of protons and neutrons. Because of the Coulomb
repulsion for heavier nuclei, one has a neutron excess: If, in the
nucleus, we replace a neutron by a proton, we gain symmetry energy
and lose Coulomb energy. Since the Coulomb energy is already
taken into account by Eq. (2.26), there must be an additional
difference between the single-particle potential for protons and
neutrons, which is caused by the symmetry energy. The nuclear part
of the proton potential is therefore deeper (see Fig. 2.7, dashed line).

These two effects go in opposite directions, but they do not cancel. In the
end, the Fermi surfaces for protons and neutrons must be equal, otherwise
protons would turn into neutrons by B-decay or vice versa, whichever is
energetically favored.



These two effects go in opposite directions, but they do not cancel. In the
end, the Fermi surfaces for protons and neutrons must be equal, otherwise
protons would turn into neutrons by f-decay or vice versa, whichever is
energetically favored.

In N# Z nuclei, energy levels with the same quantum numbers for
protons and neutrons are therefore shifted with respect to one another by
an amount A, resulting from a positive contribution A. from the Coulomb
force and a negative contribution —Ag from the symmetry energy

t,fj,’)—cjg)=A¢=AC—As. (2.27)

In heavy nuclei, this difference is such that the protons and neutrons at the
Fermi surface belong to different major shells.

@ - @

Figure 2.7. Comparison of the shell model potential for neutrons and protons in a
nucleus with neutron excess.



The Fermi level coincides in this case with the 1d, ;, level (see Fig. 2.5).

If we use the indices i, j for the levels below the Fermi surface (¢ < €;),
and the indices m,n for the levels above the Fermi surface (¢, > ¢,), the
lowest excitations in the shell model are then ph excitations of the form

P, = a,a|Pp=*art by g ---a.'tlaiil---a;l“> (2-28)

with excitation energy ¢, =€, —¢.

In fact one has observed such states in magic nulcei. They are, however,
not the lowest states. As we have already seen in Chapter 1, there are
low-lying collective states which cannot be explained in the independent
particle model.

The Slater determinants (2.23) form a complete set of states for the A
nulceon system [L& 55]. Each state of the system is characterized by the
distribution of the nucleons among the levels of the single particle poten-
tial, that is, by the “occupation numbers” of the levels. It is usual to
classify all excited states by taking the ground state as a reference state.
The nucleons that are missing in the ground state are denoted by holes,
those above the Fermi levels by particles. A typical multiparticle-multihole
configuration is shown in Fig. 2.8

Starting from a magic nucleus with the mass number A4, we can add a
particle and obtain a nucleus with the mass number A4 + 1. If we put the

N
\aaas

Figure 2.8. Schematic representation of a typical five-particle (crosses), five-hole
(open circles) state.




particle into the level m, the wavefunction is

|®,>=a, Py (2.29)
and we get the energy difference
e, =E,(A+1)— Ey(A). (2.30)

In this way one is able to measure the single-particle energies (see Sec. 2.7).
These are the simplest states in 4 + 1 nuclei. More complicated states have
a 2p— 1 h structure, and so on. In complete analogy, there are lh, 1p—2h,
etc., states in 4 — 1 nuclei.

It often turns out to be very convenient to define quasiparticles by the
operators

a,:’,:-a,:, am-a:,, for €, > €,; 231)

o =a, a=a, for ¢ < €.
These quasiparticles are again fermions. They are particles for states
above, and holes for states below, the Fermi surface, so that we have

o |®,) =0, (2.32)

that is, the ground state of the magic nucleus is a “vacuum” with respect to
these quasi-particles; ph states are two-quasi-particle states, and so on. The

multi-quasi-particle states
A S a . Lo, | Do) (2.33)

form a complete orthogonal set in the many-body Hilbert space.
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5.2 The General Variational Principle

We first want to show that the exact Schrodinger equation

H|¥Y)=E|¥)
is equivalent to the variational equation
SE[¥]=0,
with
CY|H (¥
E|\V|= ;
[¥] (Y| ¥)

The variation (5.3) can be obtained from (5.4):
(OY|H—E|¥)+{¥|H—-E|8¥)=0.

(5.2)

(5.3)

(5.4)

(5.5)

Since |¥) is, in general, a complex function, we can carry out the variation
over the real and imaginary part independently, which is equivalent to
carrying out the variation over [§ ¥) and (8 ¥| independently. To see this
we use the fact that Eq. (5.5) is valid for arbitrary infinitesimal |§ ¥). We

can replace [8¥) by i|§ ¥) and get
—i(8Y|H—-E|¥)+i{¥Y|H—-E|8Y¥).

(5.6)



Together with Eq. (5.5), we find
(8Y|H—-E|¥)>=0 (5.7)

and the complex conjugate equation. Since |§ ¥) is arbitrary, Eq. (5.7) is
equivalent to the eigenvalue problem (5.2).

The approximation of such variational methods consists of the fact that
|¥> is usually restricted to a set of mathematically simple trial wave
functions. As soon as the true function is not in this set, the minimal
solution is no longer the exact eigenfunction, but only an approximation.
The variational method is especially well suited for determining the ground
state, since for any trial wave function |¥) we can show that

E[¥]> E,, (5.8)

and thus E, will always be the lower bound of a variational calculation. To
prove this, we develop the trial wave function in terms of the exact
eigenfunctions of the Hamiltonian:

o0

W= 2 4| ¥, (39)

n=0

with



This yields
2’ a:anEnann‘ 2 Ia,,leo

E[¥]="— o i e
2 a,| 2 a,|

E,, (5.11)

which is precisely Eq. (5.8). In cases where the ground state energy is not
degenerate, the equality sign in (5.11) is valid, if and only if all .the
coefficients g, with n%0 vanish, that is, |¥) is proportional to |¥>. If we
are interested in the first excited state, we then have to carry out the
variation within the subspace entirely orthogonal to [¥,>, that is, over all
the wave functions |¥) with a,=0. Within this subspace |¥,> has the
minimal expectation value of H. To find |¥,), we must carry out the
variation with the subsidiary condition (¥, |¥,>=0. In principle we can
continue and calculate the whole spectrum using this method.

In practice, however, we do not know |¥,> exactly. From a variation in
a restricted subset of the Hilbert space, we find only an approximation
|®,>. For the calculation of an approximation |®,) to the first excited state
|¥,>, we have to solve the variational equation (5.3) with the supplemen-
tary condition that |®,) is orthogonal to |®,):

(®, | D> =0. (5.12)



For the second excited state, we must have two supplementary conditions,
namely:

(®,|®,>=0; and (D,|®,>=D0. (5.13)

These supplementary conditions are coupled to the problem via Lagrange
parameters. We thus see that for higher excited states this method quickly
gets rather complicated, therefore it has been applied mainly for the
calculation of the ground state. Sometimes, however, these conditions are
simply fulfilled because of symmetry properties, as, for example, is the case
for states with different angular momentum quantum numbers. We will see
in Chapter 7 how to calculate a whole rotational band where the determi-
nation of each level is no more complicated than that of the ground state.

So far we have shown that for a certain trial wave function, the ground
state energy is always larger than or equal to the exact ground state energy
and corresponds to an extremum. In actual calculations, we have to make
sure that this extremum actually corresponds to a minimum, that is, we
must calculate the second derivative of the energy functional, for example,
with respect to certain parameters. In the case of the Hartree—Fock or
Hartree-Fock—-Bogoliubov theory, we will come back to this point (in
Chapter 7).

In order to decide which of two variational approaches (i.¢., two sets of
trial wave functions) is the better one, we have two criteria:



(1) If one set of the trial wave functions is a subset of the other, the
larger set is usually the better one, because it contains the first’s set
minimum.

(i1) Since the exact E is a lower bound, we may hope that out of two
trial wave functions, the one for which the corresponding energy is
closest to Ej is better.

Both criteria are, however, not exact statements. Pathological examples can
be found which contradict them.

We finish this section with the remark that the variation principle is only
valid in this form for a linear eigenvalue problem of the type (5.2). In cases
where the Hamiltonian itself depends on the wave function we want to
determine, we have to be very careful in applying this principle.

5.3 The Derivation of the Hartree-Fock Equation

5.3.1 The Choice of the Set of Trial Wave Functions

Using the fact that the shell model has provided a suitable approximation
for the qualitative explanation of many nuclear properties, we shall assume
that there is an average single-particle potential (later to be called the
Hartree—Fock potential)

A
HYF = h(i) (5.14)
i=1
whose eigenfunction having the lowest eigenvalue E;'F is an approxima-
tion to the exact ground state function. This eigenfunction ®(1...4) is, as
we have seen in Chapter 2, a Slater determinant



A
HF)=|®(1...4))>= [] a*|-> (5.15)
i=1
in which the Fermion operators a,",a, correspond to the single-particle
wave functions ¢,, which are themselves eigenfunctions of the single-
particle Hamiltonian A, viz:

h(De (V)= €@ (7), i={r,s;,t}. (5.16)
As we have seen in Section 2.5, we obtain the lowest eigenvalue of HHF if
one occupies the A4 lowest levels in the state |HF) (Eq. 5.15). In the
following, we will characterize the occupied levels in |[HF) by the letters
i, j (hole states) and the empty levels by m, n (particle states). If we do not
distinguish, we use the letters &, /, P 9q.

The wave functions ¢, (r,s, ) are a coordinate space representation of
the eigenstates |k) of the single-particle Hamiltonian 4. Very often, we
work in a configuration space based on some arbitrary complete and
orthogonal set of single-particle wave functions {x,} (an example is the set
of spherical harmonic oscillator wave functions). The function ¢, can be



expanded on this basis:
$r = 2{3 Dyx;- ‘ (5-17)

If, for each wave function x,. we define corresponding fermion creation
and annihilation operators ¢,", ¢, (see Section C.1), we can similarly express
the operators @, by the operators ¢,*:

at = 513 D,c'. (5.18)

Since both sets {¢,} and {x,} are complete and orthogonal, the transfor-.
mation D has to be unitary:

D*D=DD*=1. (5.19)

——

— =

} This fact also guarantees that the operators (q,", a,) and (c,", ¢,) both obey
. separate Fermi commutation relations.

As discussed in Section D.2, there is no one-to-one correspondence

. between a Slater determinant ® of the form (5.15) and the set of single-

particle states ¢, . Any unitary transformation which does not mix particle

l and hole states leaves ® unchanged (at least up to an unimportant phase).



It is therefore more convenient to represent a Slater determinant |®) by
its single-particle density matrix (D.9):

o= <{®|c; e |®. (5.20)
BErom Eqs. (5.18) and (5.19), we get

A
Pu = % D, D} < ®|a; a|®)= ZI D, Df; (5:21)
i-
because p is diagonal in the basis a,', a, with the eigenvalues (occupation
. numbers) 1 for i< A (holes) and 0 for i> A (particles). The trace of p is
equal to the particle number.

As we show in Appendix D.2, there is a one-to-one correspondence
between the Slater determinant ® and its single-particle density p. Single-
particle densities p of Slater determinants are characterized by the fact that
they have only eigenvalues O or 1, that is,

p’=p. (5.22)

| p is therefore a projector in the space of single-particle wave functions onto
I the subspace spanned by the hole states ¢,.
In the same way, we can define a projector o

o=1-p (5.23)

| onto the subspace spanned by the particle states g,,.

The Hartree—Fock method [Ha 28, Fo 30] is now defined in the following
way. We use the set of Slater determinants {®} of the form (5.15)
consisting of 4 arbitrary but orthogonal single-particle wave functions ¢,
as trial wave functions and minimize the energy within this set. An
equivalent statement would be that we use the set of all wave functions



{®} whose single particle density (5.20) has the property p’=p and
Trp=A.

As we will see in the following sections, this variation will give us the
possibility of determining the single-particle operator H HF,

5.3.2 The Hartree-Fock Energy

Before we are able to carry out the variation which allows us to determine
the HF-wave function ®, we have to calculate the HF-energy

ENF=(0|H|D). (5.24)

We start with the many-body Hamiltonian H and represent it in second
quantization by the basis operators ¢,*, ¢, (see Section C.1):

1 %
H= 21 foCr, €, 2 > Ot 151,E1, €ty €181 (5:25)
hi

lhlly
where

Ot 1t ™ Otyttyty ™ Ottty (5.26)

Wick’s theorem (Sec. C.4) allows us to calculate the energy (5.24) as a
functional of the single-particle density



1 2
EYF[p]= 121: 1, ®Ple;fe, | B>+ = > Oy SRl Cr €7 e 0, | D)
192

hialyly

1 =
= 2 b1, + 2 Z Piyt, O 1051,Pr 1, (5.27)
1|’2 l|’213[.
1 +
=Tr (tp) + 5 Tr,Try(pBp), (5.28)

where Tr,Tr,... is an obvious shorthand notation. Eq. (5.28) does not
depend on the basis. We can therefore use it to give an expression for the
HF-energy in the HF-basis {¢,) in which p is diagonal with the eigenval-
ues 0 and 1

A A
EMF=Su+3 3 5, (5.29)
=1 i =1

5.3.3 Variation of the Energy

To determine the HF-basis, we have to minimize the energy (5.28) for all
product wave functions |®) or for all densities p with the property p*=p.
Since a small variation p+ 8p has to be a projector again, we get

(p+8p)’=p+8p
or, up to linear terms in 8p,
dp=pdp+dpp.



In the HF-basis, where p is diagonal, this means that the particle—particle
(pp) and hole-hole (hh) matrix elements of 3p have to vanish, that is,

pdpp=0dpa=0. (5.30)

To make sure that we stay within the set of Slater determinants, therefore,
we can only allow for variations dp,, and ép,,, of the ph and Ap matrix
elements of p in the HF-basis.

The variation of the energy (5.27) is then given by

SE=E[p+ 8p]— E[p] = > hubppi= D h,0p,,+c.c., (531)
kk' mi

where the Hermitian matrix 4 is defined as

9E™[p]
hy, = - 5.32
kk apk'k ( )
From Eq. (5.27), we obtain
h=t+T (5.33)

with the self-consistent field
Lhae= l; sk P~ (5-34)



Since arbitrary values of 8p,,; are allowed, we see from Eq. (5.31), that the
condition 8E =0 for the HF-solution means that the ph matrix elements of
h have to vanish,

A
Ppi=tyi+ 2 Tpyy=0  (fori<4,m>A), (5.35)
Jj=1

in the basis where p is diagonal, that is, 4 does not mix particle and hole
states of p and Eq. (5.35) is equivalent to

[A.p]=[1+T[p].p]=0. (5.36)

This is a nonlinear equation, and not easy to solve. It also states that # and
p can be diagonalized simultaneously. Since the basis in which p is
diagonal is determined only up to unitary transformations among the
occupied levels or among the empty levels, we use this freedom and require
that h shall be diagonal. This defines the Hartree— Fock basis and converts
(5.36) into an eigenvalue problem.

A
B = b+ 25 Duinei= € (5:37)

i=1
Considering the fact that this basis is given by the transformation D (5.18),
we obtain the set of Hartree—Fock equations

;hll’Dl’k 2 (’11 + 2 zolplp pi )D/'k=€lek- (5-38)

i=1 pp’
which represent a Hermitian eigenvalue problem. It is nonlinear because
the matrix # depends on the density p, that is, on the solution of the



problem. The coefficients D, found by the solution of these equations
determine the single-particle wave functions ¢, [Eq. (5.17)].
We have thus derived a single-particle Hamiltonian

112 2 hoay ay = 2 (t+ r)kk'ak+ak'
kk’ kk'

A
=3 (’kk + 2 i j)ak a.= > €aa, (5.39)
kk’ Jj=1 k
with the properties required in Section (5.3.1): The Slater determinant
|HF), where the lowest 4 levels are occupied, corresponds to an energy E
which is stationary against small variations of the wave function.

The single-particle Hamiltonian 4 contains, besides the kinetic energy ¢,
a self-consistent field I' (Eq. (5.34)), which depends on the density of the
nucleus. It is a one-body field and averages over all two-body interactions.
This point will become even clearer in the coordinate representation (Sec.
5.3.4). The energy expectation value of the HF-wave function |HF) is
given by Egs. (5.29) and (5.37):

Ey"= 2 &= 2 Oy (5.40)

i=] if=1

It is therefore not equal to the sum of single-particle energies [compare the
discussion of this point in Sec. (2.8.6)].



5.3.4 The Hartree-Fock Equations in Coordinate Space

To give a better interpretation of the structure of Eq. (5.38), we write it
down in the coordinate space. Assuming a local two-body potential which
does not depend on spin or isospin, that is, a pure Wigner force (see Sec.
4.2), we find instead of Eq. (5.38):

2

A
— AP 1)+ 3, [ @ o) g ) (990 - g @0 )

= € (7). (5.41)
Defining the local Hartree potential
A
T,(r)= f dr’ o(r, 1) -2. () *= f dr’ v(r, ¥')p(r’) (5.42)
=

and the nonlocal or exchange potential

A
Le(rr)=—o(r,r) 2| @} (F)g;(r) = — e(r.r)p(r. T), (5.43)
Y=

we find that ¢, (r) is the solution of a nonlocal Schrédinger equation

{ ¥ _’.‘iA + FH(I')}% (r)+ fdr’ Fe(rr)e(r)=¢(r). (5.44)

2m



3.4 The Hartree—Fock Method in a Simple Solvable Model

As we will discuss in the last section of this chapter, all realistic HF calculations are
very difficult numerical problems. In order to get some feeling about how this
method works, we want to apply it to a very simple, exactly solvable model first
proposed by Lipkin, Meshkov, and Glick [LMG 65], and which has been widely
used to test all kinds of many-body theories (as we shall see later on). Let us

Furthermore, it is assumed that in the basis produced by the fixed potential of the
core, the residual interaction of the nucleons in the two shells is of a very special
form, being of the monopole-monopole type (see Chap. 4) and having essentially
only one matrix element different from zero (a particle-hole matrix element of the
RPA type (see Chap. 8)). The model Hamiltonian is then of the form

HmeKy— V(K K, +K_K_), (5.45)

with

f L]
1 : L
Ko= = 2 = Clue_n) K,m E L K_=(K_.)5

2 mm | ¥ PSR mrm |

(5.46)
where @=2j+1 and ¢ ,,ct,, creale a particle in the upper and lower levels,
respectively, and ¢ is the energy difference between the two levels (see Fig. 5.1).
The operators K, K, fulfill the commutation relations of angular momenta.

K,k ]l=2K; [K,K,]==K,. (5.47)
€y e s's  ——Dfold
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Figure 5.1. Level scheme in the schematic model.



