

Химическая связь

Химическая связь – сердце химии. Кроуфорд

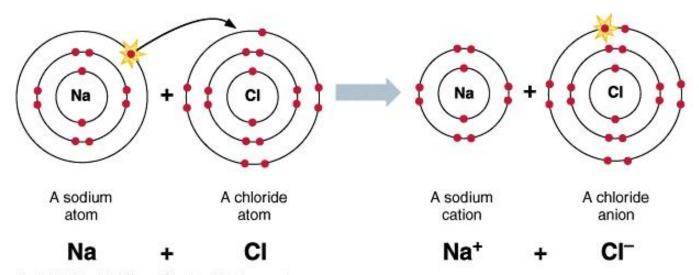
Виды химической связи

Ковалентная связь

• Ковалентная связь — это связь между атомами за счет образования общих связывающих электронных пар.

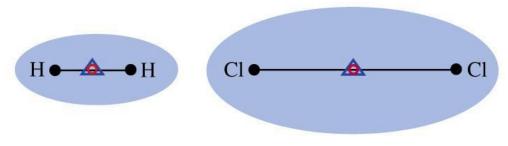
Гильберт Льюис (1875-1946) 1916 г. – статья «Атом и молекула»

1923 г. – статья «Валентность и строение атомов и молекул»


Ирвинг Ленгмюр (1888-1957)


Ионная связь

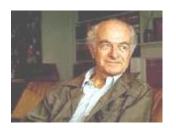
Вальтер Коссель (1888-1956)



Copyright 1998 by John Wiley and Sons, Inc. All rights reserved.

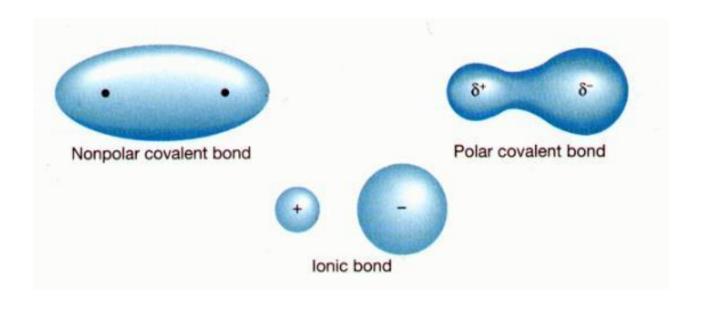
Полярность связи. Диполь

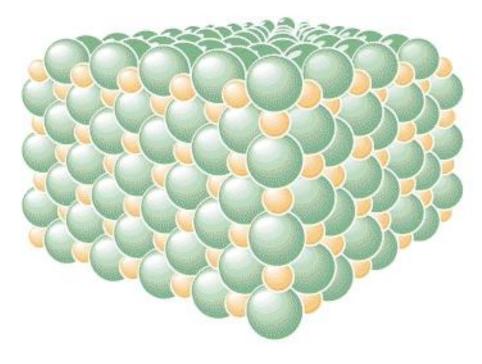
1932 г.


(a) Nonpolar covalent bonds

(b) Polar covalent bond

- = Atomic nucleus
- \triangle = Center of positive charge
- = Center of negative charge


Электроотрицательность — способность атомов того или иного элемента смещать к себе общую электронную пару при образовании связи.



Лайнус Полинг

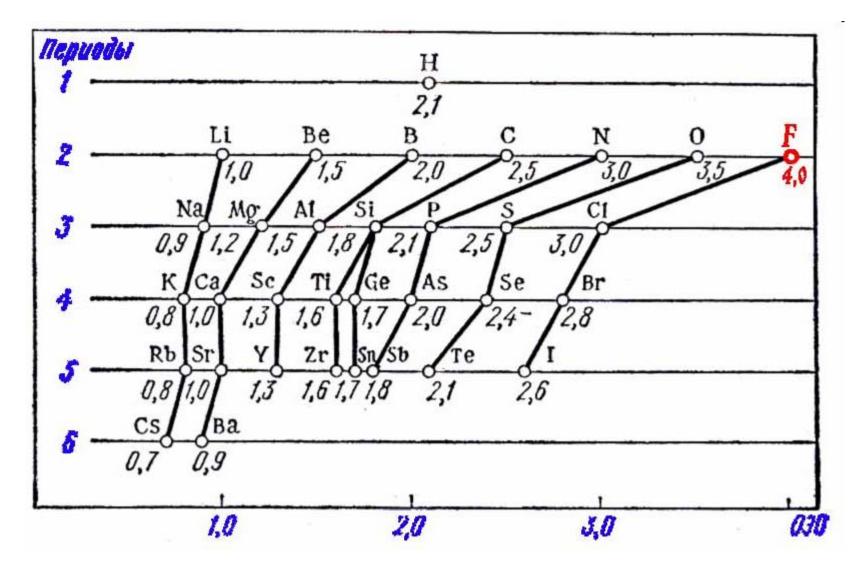
Шкала электроотрицательности Cs Na Mg Si H C Cl N O F

Полярная и неполярная КС

Copyright 1998 by John Wiley and Sons, Inc. All rights reserved.

Ковалентная полярная или ионная связь?

Ионными соединениями следует считать:


- Галогениды и оксиды щелочных, щелочноземельных металлов и магния
 - NaCl, KBr, CaF2, BaO
- Соли и щелочи
 - Na₂SO₄, KOH, CH₃COONa

Определите тип химической связи

RbF

H₂SO₄ K₂CO₃

Шкала Полинга

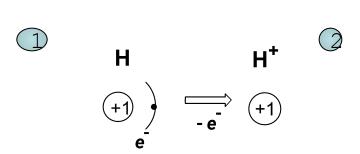
Шкала Олреда-Рохова

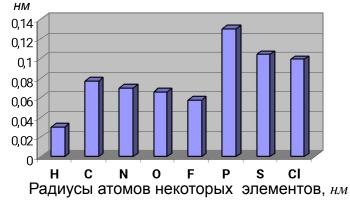
Элемент	∂ л:ль	Элемент	₹J.TÞ
Ec	0,86	Hg	1,44
Çş.	0,86	Pt	1,44
Bb	0,89	II.	1,44
K	0,91	Bh	1,45
Na	0,93	V	1,45
Ra	0,97	Çd	1,45
Ba	0.97	Re	1,46
Li	0,97	Al	1.47
Sr.	0,99	Be	1.47
Ac	1,00	In	1,49
Ca	1,04	Os	1,52
La	1,08	lt	1,55
Y	1,11	Pb	1,55
Sc	1,20	Cr	1,56
Zr.	1,22	Mn	1,60
Hf	1,23	Fe	1,5
Nb	1,23	Zn	1,66
Mg	1,23	Bi	1,67
Mo	1,30	Co	1,70
Ti	1,32	Sn.	1.72
Ta	1,33	Ni	1.75
Pd	1,35	Cu	1.75
JE	1,36	Po	1.75
W	1,40	Ga	1,82
Au	1,42	Sb	1,82
Ag	1,42	At	1,90
Ru	1,42	В	2,01

Элемент	Зл:ть
Ге	2,02
Ge.	2,02
Ba.	2,06
Н	2,10
As	2,11
	2,21
Si	2,25
P	2,32
Xe.	2,40
Se	2.48
C	2,50
S	2,60
Br	2,74
ÇĮ	2,83
Kr	2,94
N	3,07
Ar.	3,20
0	3,50
F	4,10
Ne	4,84
He	5,50

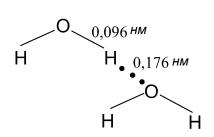
Физические характеристики некоторых ковалентных

связей

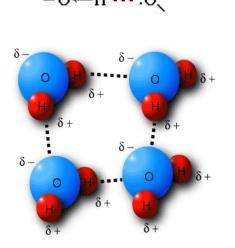

Связь	Длина, нм	Энергия, кДж/моль	Полярность, D	Поляризуемость, см³•моль ⁻¹
С – С (в алканах)	0,154	347	0	1,3
С = С (в алкенах)	0,134	607	0	4,2
С ≡ С (в алкинах)	0,120	803	0	6,2
C – O	0,143	335	0,7	1,5
C = O	0,121	695	2,4	3,3
C – N	0,147	285	0,5	1,6
C = N	0,127	615	1,4	3,8
C ≡ N	0,115	866	3,1	4,8
C – F	0,140	448	1,4	1,4
C – CI	0,176	326	1,5	6,5
C – Br	0,191	285	1,4	9,4
C – I	0,212	231	1,3	14,6
Н – С (в алканах)	0,109	415	0,4	1,7
Н – О (в спиртах)	0,096	464	1,5	1,7
H – N	0,101	389	1,3	1,8
N – N	0,148	163	0	2,0
N = N	0,124	418	0	4,1
N – O	0,137	200	1,0	2,4
N = O	0,122	400	3,0	4,0

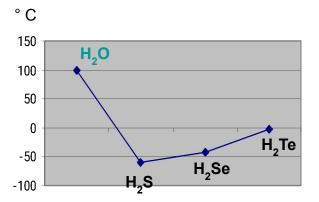

Водородная связь

Энергия водородной связи Энергия ковалентной связи


8 — 80 кДж/моль 20 — 1000 кДж/моль

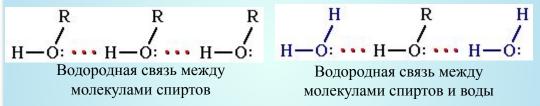
Уникальные особенности атома водорода


Образование водородной связи между молекулами воды



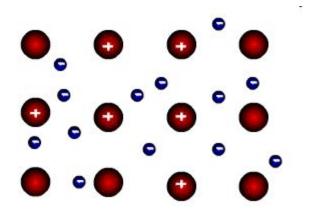
3,0 3,5 4,0

 $-O - H \cdot \cdot \cdot O$



Температура кипения водородных соединений элементов VIA группы

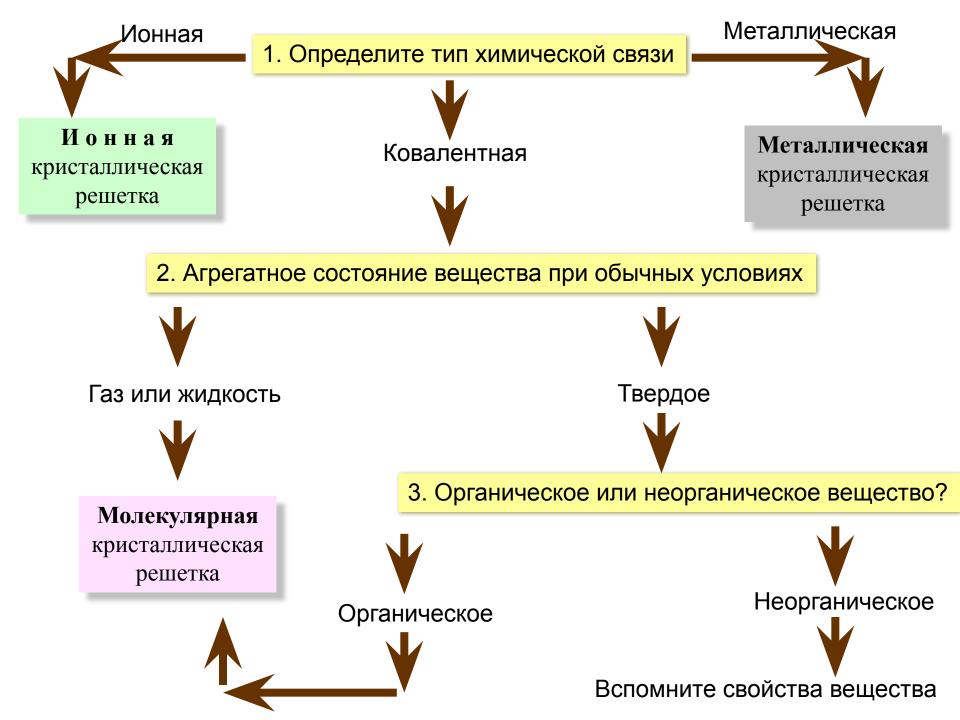
Водородная связь в органических соединениях


Карбоновые кислоты
δ- δ ⁺ 0H-0
a) $R - C = \delta^+ \delta^- C - R$ $R = R$ $R = R$
0) 0—н••• 0 0—н•••
Водородная связь между молекулами карбоновых кислот: а) циклический димер; б) линейный олигомер

Вещество	Молярная масса, г/моль	Температура кипения, °С
Пропан	44	-42
Этанол	46	78
Бутан	58	0
Пропанол-1	60	97
Уксусная кислота	60	118
Этандиол	62	197
Пентан	72	35
Диэтиловый эфир	74	35
Бутаналь	72	76
Бутанол-1	74	118
Пропионовая кислота	74	141

Энтальпия диссоциации водородных связей, объединяющих пАры частиц в газовой фазе, кДж/моль

Слабая связь		Средней силы		Сильная связь	
HSH···SH ₂	7	FH⋯FH	29	HOH···CI	55
NCHNCH	16	CIHO(CH ₃) ₂	30	HOH…F⁻	98
H ₂ NH···NH ₃	17	FH···OH ₂	38	FH···F	169
CH ₃ OH···OHCH ₃	19				
HOHOH ₂	22				


Металлическая связь

Кристаллические решетки

кристаллической	Частицы в узлах кристаллической решетки	Взаимодействие между частицами в узлах решетки	веществ	Примеры твердых веществ
Атомная	Атомы	Ковалентная связь	Прочная решетка, высокие значения $t_{\rm nn}$	Алмаз, графит, диоксид кремния
Молекулярная	Молекулы	Межмолекулярное взаимодействие	Непрочная связь, низкие значения $t_{\scriptscriptstyle \Pi,\Pi}$	Иод, лёд, твердый углекислый газ
Ионная	Ионы	Ионная связь (электростатическое притяжение)	Относительно прочная решетка, средние значения $t_{\rm nn}$	Соли, щелочи
Металлическая	Атомы или катионы металлов	Электронный газ относительно свободные электроны	Относительно прочная решетка, средние значения $t_{\rm пл}$	Металлы

Атомную кристаллическую решетку имеет

- 1) хлороводород
- 2) вода
- 3) поваренная соль
- 4) кремнезем

Хлорид калия имеет кристаллическую решетку

- 1) атомную
- 2) молекулярную
- 3) ионную
- 4) металлическую

Веществами молекулярного строения являются все вещества ряда

- 1) сахар, сера, поваренная соль
- 2) поваренная соль, сахар, глицерин
- 3) сахар, глицерин, медный купорос
- 4) сера, сахар, глицерин

CuSO₄·5H₂O

К веществам с атомной кристаллической решеткой относятся:

- 1) магний, алмаз, сера
- 2) бор, алмаз, карбид кремния
- 3) сера, бор, хлорид калия
- 4) белый фосфор, иод, вода

A5-5

Для веществ с металлической кристаллической решеткой нехарактерным свойством является

- 1) низкая температура кипения
- 2) теплопроводность
- 3) хрупкость
- 4) пластичность

К веществам с молекулярным строением относятся

- 1) графит и оксид углерода (IV)
- 2) вода и оксид углерода (II)
- 3) сера и оксид железа (III)
- 4) серная кислота и оксид кремния (IV)

Молекулярное строение имеет каждое из двух веществ:

- 1) NH₄Cl u CH₃NH₂
- 2) C₂H₅OH и CH₄
- 3) Na₂CO₃ u HNO₃
- 4) H₂S u CH₃COONa

Оцените верность суждений

- Верны ли следующие суждения об объеме газов?
- А. Равные объемы различных газов при одинаковых условиях содержат одинаковое число молекул.
- Б. Порции разных газов, содержащие одинаковое число молекул, занимают одинаковый объем при одинаковых условиях.
- 1) верно только А
- 2) верно только Б
- 3) верны оба суждения
- 4) оба суждения неверны

- Верны ли следующие суждения о свойствах иодоводородной кислоты?
- А. Иодоводородная кислота взаимодействует с гидроксидом бария.
- Б. Иодоводородная кислота взаимодействует с концентрированной серной кислотой.
- 1) верно только А
- 2) верно только Б
- 3) верны оба суждения
- 4) оба суждения неверны

- Верны ли следующие суждения об осаждении и растворении сульфидов?
- А. Сероводород можно получить при взаимодействии сульфида железа(II) с соляной кислотой.
- Б. При пропускании сероводорода в раствор хлорида меди(II) образуется сульфид меди(II).
- 1) верно только А
- 2) верно только Б
- 3) верны оба суждения
- 4) оба суждения неверны

Произведение растворимости сульфидов

Вещество	ПР	Вещество	ПР
FeS	6,3 · 10-18	CdS	8,0 · 10 ⁻²⁷
MnS	1,0 · 10-13	CuS	6,3 · 10 ⁻³⁶
ZnS	1,1 · 10 ⁻²¹	HgS	4,0 · 10 ⁻⁵³
		PbS	8,0 · 10 ⁻²⁸

Сульфидная классификация катионов

Аналити- ческая группа	Катионы	Групповой реактив	Состав осадков
I	Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺ , (Mg ²⁺)	Нет	_
II	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Mg ²⁺	$(NH_4)_2CO_3$	MCO ₃
IIIA	Al ³⁺ , Cr ³⁺	(NH ₄) ₂ S	M(OH) ₃
IIIB	Mn ²⁺ , Fe ²⁺ , Fe ³⁺ , Co ²⁺ , Ni ²⁺ , Zn ²⁺	(NH ₄) ₂ S	MS, M ₂ S ₃
IVA	Hg ²⁺ , Cu ²⁺ , Bi ³⁺ , Cd ²⁺	H_2S	${ m MS,M}_2{ m S}_3$ нерастворим в ${ m (NH}_4)_2{ m S}_2$
IVB	Sn ²⁺ , Sn ⁴⁺ , As ³⁺ , Sb ³⁺ , (Sb ⁵⁺)	H_2S	${ m MS, \ M_2S_3}$ растворим в ${ m (NH_4)_2S_2}$
V	$Ag^{+}, Pb^{2+}, Hg_{2}^{2+}$	HCl	MCl, MCl ₂

- Верны ли следующие суждения о свойствах алюминия?
- А. Алюминий вытесняет медь при взаимодействии с сульфатом меди(II).
- Б. Алюминий вытесняет медь при взаимодействии с хлоридом меди(II).
- 1) верно только А
- 2) верно только Б
- 3) верны оба суждения
- 4) оба суждения неверны

Верны ли суждения?

Использование кислотно-основных индикаторов впервые было предложено А. Лавуазье

Натрий и калий были получены через 2-3 года после того, как был установлен состав воды

Альберт Великий был оппонентом Р. Бекона, вёл с ним догматические споры и считал, что философского камня не существует

Впервые газообразные вещества стал получать Г. Дэви – основатель пневмохимии «Лейденские банки» - простейшие конденсаторы – были изобретены сразу после появления «вольтовых столбов»

Грамм и метр – эталоны, которые были введены во Франции во время Великой Французской революции

- Л. Гальвани был физиологом, а источник постоянного электрического тока, который потом стал использоваться повсеместно, изобрел случайно
- А. Лавуазье был казнен по приказу Наполеона за свои политические взгляды
- М. Фарадей в начале своей научной карьеры был лакеем и ассистентом

Периодическая система Д.И. Менделеева сразу же стала путеводной звездой многих химиков в поисках ещё неоткрытых элементов.

Fe + HNO_3 (конц.) = ?

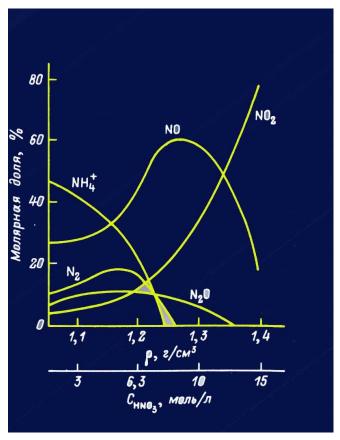


График.
Содержание продуктов
восстановления азотной кислоты
в реакции с железом
в зависимости от ее концентрации

С2 в старой формулировке

Даны вещества:

• азотная кислота (конц.)

Растворы:

- карбоната калия
- сульфида натрия
- хлорида железа(Ш)

Напишите уравнения четырех возможных реакций между этими веществами.

HNO₃(конц.), K₂CO₃, Na₂S, FeCl₃

1)
$$2HNO_3 + K_2CO_3 = 2KNO_3 + CO_2 \uparrow + H_2O_3$$

2)
$$2HNO_3 + Na_2S = 2NaNO_3 + H_2S\uparrow$$

3)
$$3HNO_3$$
 (конц.) + $FeCl_3 = Fe(NO_3)_3 + 3HCl$

4)
$$K_2CO_3 + Na_2S = Na_2CO_3 + K_2S$$

5)
$$3K_2CO_3 + 2FeCl_3 = Fe_2(CO_3)_3 \downarrow + 6KCl_3$$

6)
$$3\text{Na}_2\text{S} + 2\text{FeCl}_3 = \text{Fe}_2\text{S}_3 \downarrow + 6\text{NaCl}$$

HNO_3 (конц.), K_2CO_3 , Na_2S , $FeCl_3$

- 1) $2HNO_3 + K_2CO_3 = 2KNO_3 + CO_2 \uparrow + H_2O$
- 2) $4HNO_3 + Na_2S = 2NaNO_3 + S + 2NO_2\uparrow + 2H_2O$
- 3) $3K_2CO_3 + 2FeCl_3 + 3H_2O = 2Fe(OH)_3 \downarrow + 3CO_2 \uparrow + 6KCl$
- 4) $3\text{Na}_2\text{S} + 2\text{FeCl}_3 = 2\text{FeS}\downarrow + \text{S}\downarrow + 6\text{NaCl}$

С2 в новой формулировке

При взаимодействии оксида серы(VI) с водой получили кислоту.

При обработке порошкообразного иодида калия концентрированным раствором этой кислоты образовались серые кристаллы простого вещества.

Это вещество прореагировало с алюминием.

Полученную соль растворили в воде и смешали с раствором карбоната натрия, в результате чего образовался осадок и выделился газ.

Напишите уравнения четырех описанных реакций.