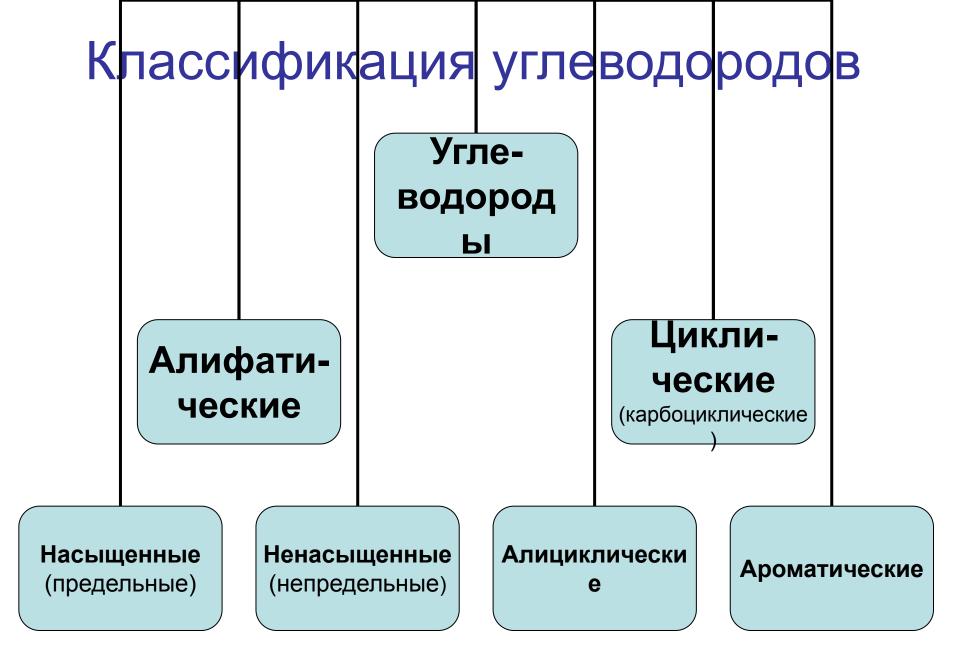
# БИООРГАНИЧЕСКАЯ ХИМИЯ

# Мария Евгеньевна Клюева

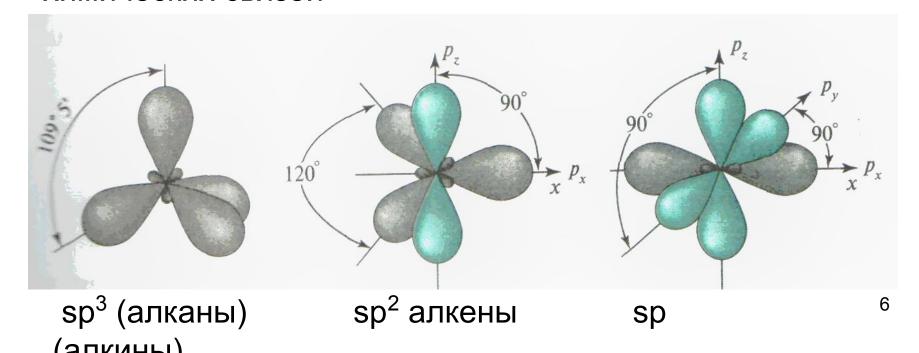
### Учебники

- 1. Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия (2012, 2008, 1985г.)
- 2. Степаненко Б.Н. Курс органической химии, том 1 и том 2, 1981 г.

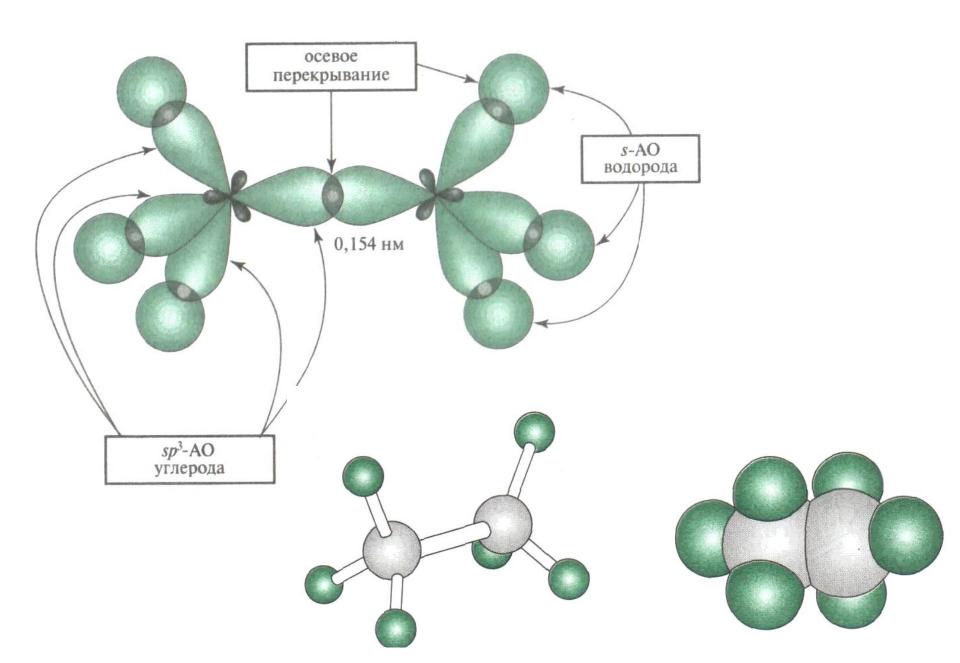
# Органические соединения - углеводороды и их функциональных производных (соединений, содержащих функциональные группы).


**Биоорганическая химия** изучает строение и свойства веществ, участвующих в процессах жизнедеятельности, в непосредственной связи с познанием их биологических функций.

Основные объекты изучения:


- **биополимеры** (белки, углеводы, нуклеиновые кислоты)
- **биорегуляторы** (витамины, гормоны, лекарственные вещества)

#### Функциональные группы:


- атомные группировки атомы металлов и неметаллов (CH<sub>3</sub>Cl, CH<sub>3</sub>Na)
- молекулярные группировки остатки молекул неорганических веществ (CH<sub>3</sub>NO<sub>2</sub>, CH<sub>3</sub>OH)
- π-электронные группировки двойные и тройные связи.



Гибридизация – вынужденное изменение энергии и симметрии атомных орбиталей при образовании химических связей

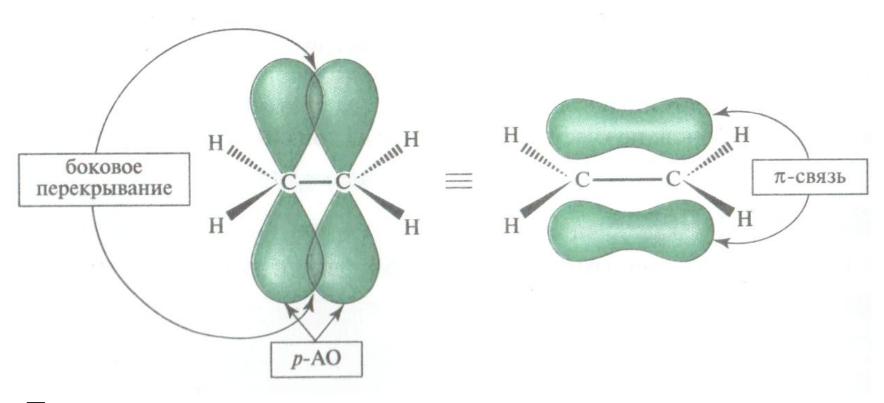


#### алканы



Алканы – малореакционноспособные соединения, «химические мертвецы».
 С трудом вступают в реакции радикального замещения атома Н.

Для образования радикалов нужны жёсткие условия (облучение УФ светом, нагревание выше 300°С).


• **Радикал** – частица, имеющая неспаренный электрон. Образуется при <u>гомолитическом</u> разрыве ковалентной связи:

$$CH_3-CH_2-CH_3$$
  $Cl_2$   $ClCH_2-CH_2-CH_3$  +  $CH_3-CH-CH_3$ 

$$CH_3-CH_2-CH_3$$
 $Br_2$ 
 $CH_3-CH_3-CH_3$ 
 $Br_1$ 
 $CH_3-CH_3-CH_3$ 

$$CH_3$$
- $CH_2$ - $CH_3$   $P$ ,  $t$   $CH_3$ - $CH$ - $CH_3$ 

#### алкены



Типичные реакции алкенов – реакции электрофильного присоединения (A<sub>F</sub>2)

$$C = C + E - Y \longrightarrow C - C - C - C$$

$$R-CH=CH_2 + Br_2 \longrightarrow R-CH-CH_2$$
  
Br Br

Обесцвечивание брома – качественная реакция на кратные связи.



Присоединение галогеноводородов в растворе и в газовой фазе

$$R-CH=CH_2 + HBr \longrightarrow R-CH-CH_2$$
  
Br H

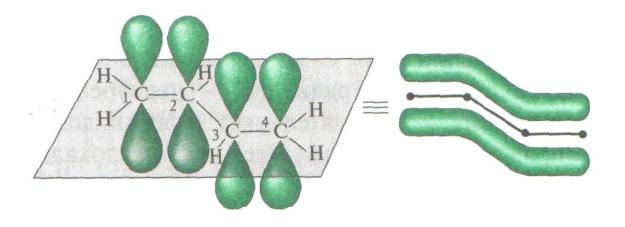
 $\uparrow$  Присоединение воды (гидратация) Катализатор – сильная кислота –  $H_2SO_4$ ,  $H_3PO_4$ 

$$R-CH=CH_2 + H_2O \xrightarrow{H^+} R-CH-CH_2$$

$$OH H$$

NB!

Правило Марковникова: водород присоединяется к наиболее "гидрогенизированному" атому углерода двойной связи.


 Реакции полимеризации – взаимодействие двух или более молекул ненасыщенных соединений или легко размыкаемых циклов, называемых мономерами, с образованием димеров, тримеров вплоть до высокополимеров.

Никогда не сопровождаются отщеплением каких-либо атомов или молекул.

$$n C=C \longrightarrow \begin{bmatrix} -C-C \\ n \end{bmatrix}_n$$

# Диеновые углеводороды

- Кумулированные  $CH_2 = C = CH_2$  аллен
- Изолированные  $CH_2=CH-CH_2-CH=CH_2$
- Сопряженные CH<sub>2</sub>=CH-CH=CH<sub>2</sub>
   бутадиен-1,3



Единая π-система охватывает 4 атома углерода.

- Делокализованная связь ковалентная связь, молекулярная орбиталь которой охватывает более двух атомов.
- Наряду с реакциями 1,2-присоединения идут реакции 1,4 присоединения (с переносом двойной связи в центр)

$$CH_2 = CH - CH = CH_2$$

$$CH_3 - CH - CH = CH_2$$

$$CH_3 - CH - CH = CH_2$$

$$CH_3 - CH - CH - CH_2$$

$$CH_3 - CH - CH_2$$

$$CH_3 - CH - CH_2$$

#### Особенности реакций присоединения к алкинам

Алкины менее реакционно способны в A<sub>E</sub>2 реакциях несмотря на две π-связи.

$$CH_3-C\equiv CH \xrightarrow{HCI} CH_3-C=CH_2 \xrightarrow{HCI} CH_3-C=CH_3$$

#### Гидратация алкинов

$$CH \equiv CH + H_2O \xrightarrow{Hg^{2+}} \begin{bmatrix} CH_2 = CH \\ H_2SO_4 \end{bmatrix} \xrightarrow{CH_3 - C \cap H_3} CH_3 - C \cap H_3$$

$$CH_{3}-C\equiv CH + H_{2}O \xrightarrow{Hg^{2+}} \begin{bmatrix} CH_{3}-C=CH_{2} \\ OH \end{bmatrix} \xrightarrow{} CH_{3}-C-CH_{3}$$

• Более важной in vivo является двойная связь. Возникновение двойной связи и её превращения характерны для многих биохимических процессов.

### Окисление алкенов

$$\begin{array}{ccc} & \text{KMnO}_4 \\ \text{CH}_2 = \text{CH}_2 & \xrightarrow{} & \text{CH}_2 - \text{CH}_2 \\ & \text{H}_2 \text{O} & \text{OH} & \text{OH} \end{array}$$

Обесцвечивание KMnO<sub>4</sub> – качественная реакция на кратные связи.

$$CH_3-CH=CH-CH_3$$
 $H^+$ 
 $CH_3C$ 
 $OH$ 
 $OH$ 

# Способы получения алканов, алкенов, алкинов, алкинов

#### самостоятельно

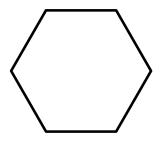
# Циклические углеводороды

- I. Алициклические углеводороды:
  - полиметиленовые углеводороды
  - производные ментана

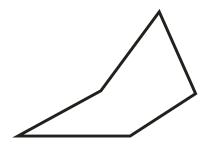
По числу циклов: - моноциклические - бициклические - полициклические

### Полиметиленовые углеводороды


#### По величине цикла

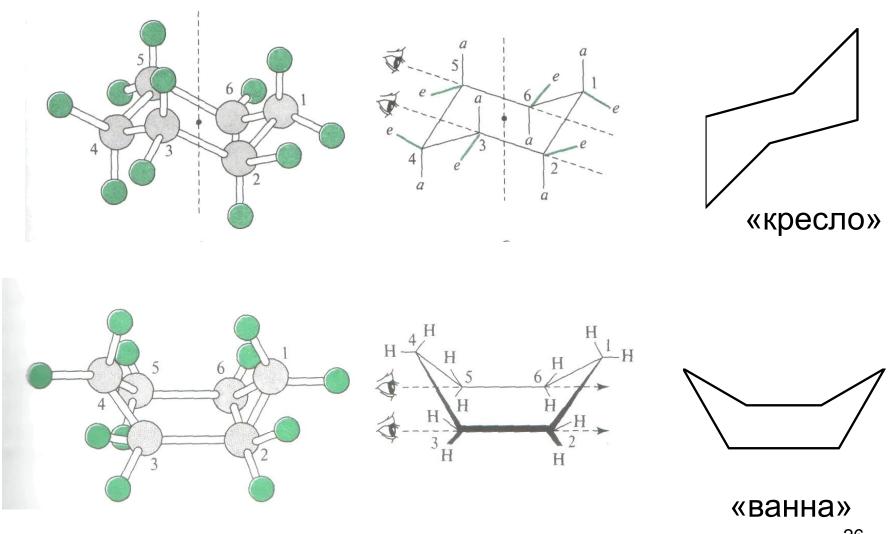

- малые циклы

Структура плоская Валентные углы сильно отличаются от 109<sup>0</sup>, связи напряжены


Характерны реакции присоединения (как для алкенов)

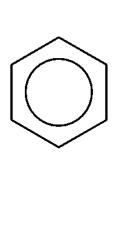
- нормальные циклы(5, 6, 7 атомов С в цикле)

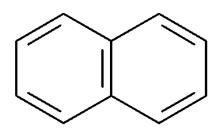


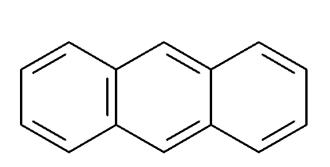


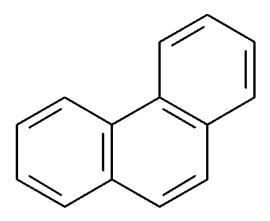

# **Характерны реакции радикального замещения** (как для алканов)




Конформация «конверта», искажение «бежит по кругу»


#### Конформации циклогексана





- средние циклы (8 11 атомов C)
- макроциклы (12 и больше атомов С)

# II. Ароматические углеводороды

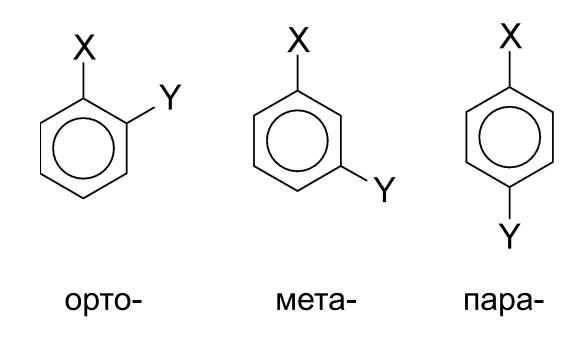








### Критерии ароматичности


- Геометрический: все ароматические системы имеют плоскую замкнутую в цикл сопряжённую систему π-электронов
- Электронный: число π-электронов
   N=4n+2 (n=0,1,2 и т.д.) правило Хюккеля
- Химический: ароматические молекулы в обычных условиях несмотря на свою ненасыщенность не вступают в реакции присоединения, а склонны к реакциям замещения по связям С-Н

# Механизм электрофильного замещения в ароматическом ядре S<sub>F</sub>2



| Название<br>реакции  | реагент                              | условия                                         | E⁺                                   | продукт                   |
|----------------------|--------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------|
| галогени-<br>рование | Cl <sub>2</sub> ,<br>Br <sub>2</sub> | AICI <sub>3</sub> ,<br>AIBr <sub>3</sub> , (Fe) | CI <sup>+</sup> ,<br>Br <sup>+</sup> | хлорбензол,<br>бромбензол |
| нитрование           | HNO <sub>3</sub>                     | H <sub>2</sub> SO <sub>4</sub>                  | NO <sub>2</sub> <sup>+</sup>         | нитробензол               |
| сульфиро-<br>вание   | H <sub>2</sub> SO <sub>4</sub>       | обратимая<br>реакция                            | HSO <sub>3</sub> <sup>+</sup>        | бензолсуль-<br>фокислота  |
| алкилиро-<br>вание   | RCI                                  | AICI <sub>3</sub>                               | R <sup>+</sup>                       | арен                      |
| ацилиро-<br>вание    | RCOCI                                | AICI <sub>3</sub>                               | RCO <sup>+</sup>                     | ароматичес-<br>кий кетон  |

# Ориентирующее действие заместителей в бензольном ядре



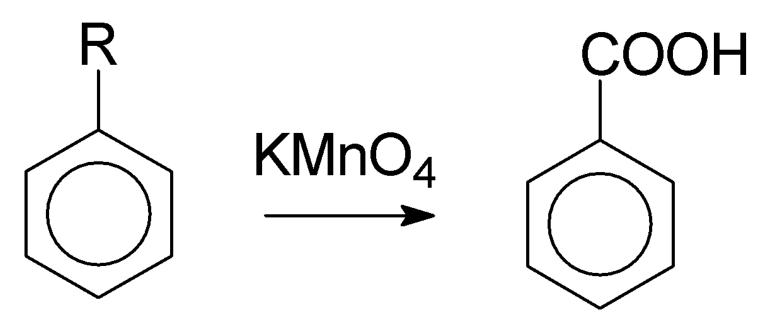
#### Заместители

• І. Активирующие ЭД-заместители. Облегчают ЭФ-замещение по сравнению с незамещённым бензолом, и направляют входящую группу в *орто-* и *пара-*положения.

• II. Дезактивирующие ЭА-заместители. Затрудняют ЭФ-замещение по сравнению с незамещённым бензолом, и направляют входящую группу в мета-положение.

$$NR_3^+$$
,  $NH_3^+$ ,  $NO_2$ ,  $CCI_3$ ,  $SO_3H$ ,  $CN$ ,  $C-R$ ,  $COOH$ 

COOH
$$\begin{array}{c|c}
\hline
Br_2 \\
\hline
FeBr_3
\end{array}$$
COOH
$$\begin{array}{c}
Br_2 \\
Br
\end{array}$$


• III. Дезактивирующие *орто-* и *пара-* ориентанты: F, CI, Br, I (-I), (+C)

$$\begin{array}{c|c}
CI & CI \\
\hline
CI_2 & \hline
HNO_3 \\
\hline
H_2SO_4 & \hline
\end{array}$$

$$\begin{array}{c}
CI \\
NO_2 \\
\hline
NO_2
\end{array}$$

#### Окисление ароматических соединений

## Окисление аренов



$$R = Alk (CH3, C2H5)$$

## Генетическая связь между классами химических соединений:

## Гидроксилпроизводные углеводородов

Спирты. Фенолы.

## Гидроксилпроизводные углеводородов СПИРТЫ (ROH)

#### Классификация

| В зависимости от числа гидроксильных групп (-ОН)                                                                    | - одноатомные<br>- многоатомные                            |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| В зависимости от строения<br>углеводородного радикала R                                                             | - насыщенные (предельные)<br>- ненасыщенные (непредельные) |
| Предельные одноатомные спирты $C_nH_{2n+1}OH$ в зависимости от того, к какому атому углерода присоединена группа OH | - первичные                                                |

### Номенклатура

|                                                                                             | научная                                                                    | тривиальная<br>(спиртовая)           |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|
| CH <sub>3</sub> OH                                                                          | метанол                                                                    | метиловый спирт<br>(древесный спирт) |
| C <sub>2</sub> H <sub>5</sub> OH<br>(CH <sub>3</sub> CH <sub>2</sub> OH)                    | этанол                                                                     | этиловый спирт<br>(винный спирт)     |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>CH <sub>3</sub> CH(OH)CH <sub>3</sub> | 1-пропан <mark>ол</mark><br>2-пропан <mark>ол</mark><br><i>и так далее</i> | пропиловый спирт изопропиловый спирт |

### Химические свойства спиртов

 I. Реакции с сохранением атома кислорода в молекуле спирта

1) кислотно-основные свойства спиртов.

Спирты – производные воды, обладают слабо выраженными кислотными и основными свойствами.

Как основания спирты сильнее, чем вода:

ROH 
$$\xrightarrow{H^+}$$
 ROH<sub>2</sub><sup>+</sup>  $\rightarrow$  ROH<sub>2</sub><sup>+</sup>  $\rightarrow$  C<sub>2</sub>H<sub>5</sub>OH  $\xrightarrow{H^+}$  C<sub>2</sub>H<sub>5</sub>OH<sub>2</sub><sup>+</sup>  $\rightarrow$  ýòè eî êñî í èé-eà òè í

2) образование простых эфиров через алканоляты

3) образование сложных эфиров карбоновых кислот

4) окисление

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{OH} & \stackrel{\text{[O]}}{\longrightarrow} & \begin{bmatrix} \text{CH}_3-\text{CH}-\text{OH} \\ \text{O-H} \end{bmatrix} \xrightarrow{-\text{H}_2\text{O}} & \text{CH}_3-\text{C} \xrightarrow{\text{O}} & \begin{bmatrix} \text{O} \end{bmatrix} & \text{CH}_3-\text{C} \xrightarrow{\text{O}} & \\ \text{I å ñoàá à è e üí î î å } & \\ \text{nîî å ä è í å í è å} & \\ \text{CH}_3-\text{CH-CH}_3 & \stackrel{\text{[O]}}{\longrightarrow} & \text{CH}_3-\text{C}-\text{CH}_3 \\ \text{OH} & \stackrel{\text{O}}{\longrightarrow} & \text{O} & \\ \end{array}$$

- II. Реакции с разрывом связи C-O
  - 1) взаимодействие с галогеноводородами HCl, HBr, HI

$$CH_3CH_2OH + HCI \longrightarrow CH_3CH_2CI + H_2O$$

2) Взаимодействие с галогенидами фосфора

$$3CH_3CH_2OH + PBr_3 \longrightarrow 3CH_3CH_2Br + H_3PO_3$$
  
 $+I_2 + P_{\text{красный}}$ 

3) С кислородсодержащими неорганическими кислотами

CH<sub>3</sub>CH<sub>2</sub>OH + H<sub>2</sub>SO<sub>4</sub> 
$$\stackrel{\text{f à \"{o}i \'{e}i \"{a}\'{o}}}{\longleftarrow}$$
 [CH<sub>3</sub>CH<sub>2</sub>OH<sub>2</sub><sup>+</sup>]HSO<sub>4</sub>  $\stackrel{\text{}}{\longrightarrow}$   $\stackrel{\text{}}{\longrightarrow}$  H<sub>2</sub>O + CH<sub>3</sub>CH<sub>2</sub>OSO<sub>3</sub>H  $\stackrel{\text{}}{\o}$   $\stackrel{\text{}}{\o}$ 

Лаурилсульфат (15 атомов С) – основа шампуней

4) образование простых эфиров (межмолекулярное отщепление  $H_2O$ )

$$H_2SO_4$$
  
 $2CH_3CH_2OH \xrightarrow{\hspace{1cm}} H_2O + CH_3-CH_2-O-CH_2-CH_3$   
èçáû ời ê  
ñi èðòà äèýòèëî âû é ýô èð

5) дегидратация (внутримолекулярное отщепление H<sub>2</sub>O)

$$\tilde{N}H_3CH_2OH \xrightarrow{H_2SO_4} H_2O + CH_2=CH_2$$

ìíîãi êèñëìòû

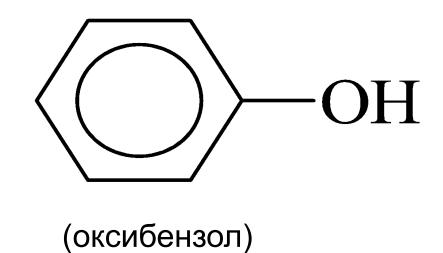
## Предельные многоатомные спирты

| СН <sub>2</sub> -ОН<br>СН <sub>2</sub> -ОН<br>этиленгликоль | СН <sub>2</sub> -ОН<br>СН-ОН<br>СН <sub>2</sub> -ОН<br>глицерин | CH <sub>2</sub> -OH<br>CH-OH<br>CH-OH<br>CH-OH<br>CH <sub>2</sub> -OH | CH <sub>2</sub> -OH<br>CH-OH<br>CH-OH<br>CH-OH<br>CH-OH<br>CH <sub>2</sub> -OH |
|-------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                             |                                                                 | ксилит                                                                | сорбит                                                                         |

## Качественная реакция на многоатомные спирты

Двух- и трёхатомные спирты образуют гликоляты или глицераты с гидроокисями тяжелых металлов, например, меди:

$$CuSO_4 + NaOH \longrightarrow Cu(OH)_2$$


2 
$$CH_2$$
-OH +  $Cu(OH)_2$   $\xrightarrow{-2H_2O}$   $CH_2$ -O  $Cu$   $O-CH_2$ 

Хелатная структура, внутрикомплексная соль

Раствор ярко-синего цвета

#### ФЕНОЛЫ

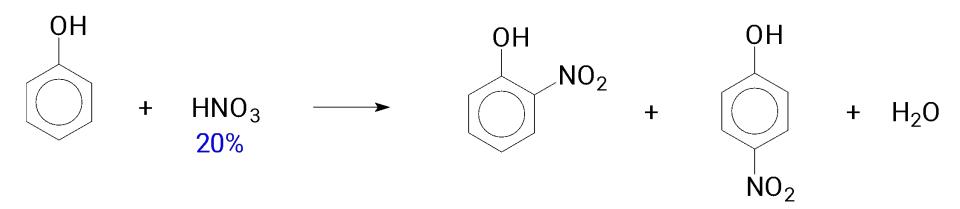
#### Одноатомные фенолы



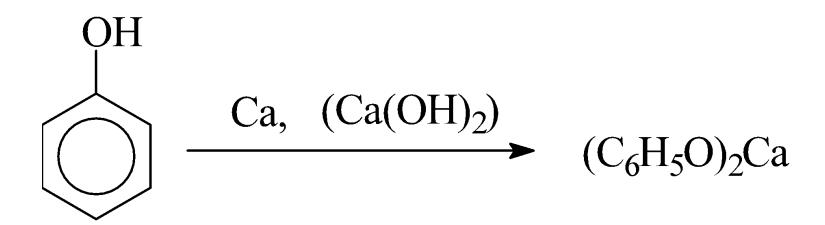
## Химические свойства фенолов

# I. Реакции электрофильного замещения (S<sub>E</sub>) (характерны для ароматического ядра) ОН – электронодонор

#### 1. Галогенирование


2,4,6-òðèáðîìôåíîë áåëû é î ñàäî ê

#### 2. Сульфирование


OH + 
$$H_2SO_4$$
 (êî í ö.)  $-H_2O$  +  $SO_3H$  +  $SO_3H$  +  $SO_3H$   $25^0\tilde{N}$   $\ddot{i}$  -ô åí î ëñóë uô î êè ñë î òà êè í åò è÷ å nêè êî í ò ðî ëè ðóåì û é  $\ddot{i}$  ò å ðì î äè í àì è÷ å nêè  $\ddot{i}$  õ ðî ëè ðóåì û é  $\ddot{i}$  õ ðî ëè ðóåì û é  $\ddot{i}$  õ ðî ëè ðóåì û é  $\ddot{i}$  ðî äóêò

#### 3. Нитрование

Концентрированная азотная кислота и нитрующая смесь окисляют фенол, поэтому его нитруют разбавленной HNO<sub>3</sub>



## II. Кислотные свойства гидроксильной группы



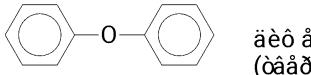
## Качественная реакция на все фенолы

$$C_6H_5OH + FeCl_3 \longrightarrow (C_6H_5O)_3Fe + HCl$$

Фенолят железа(III) Фиолетовое окрашивание

## III. Образование эфиров (реакции ОН-группы)

OH + 
$$CH_3OH$$
 -  $OCH_3$  +  $H_2O$ 
ONa +  $CH_3I$  -  $OCH_3$  +  $NaI$ 


OH 
$$+ CH_3COOH \longrightarrow O-C-CH_3 + H_2O$$

### ПРОСТЫЕ ЭФИРЫ R-O-R, Ar-O-R, Ar-O-Ar

(Ar – ароматический радикал)

$$C_2H_5$$
— $O-C_2H_5$  äèýòèëî âû é ýô èð  $(t_{\hat{e}\hat{e}\ddot{i}})^{a}=36^0\tilde{N}$ 

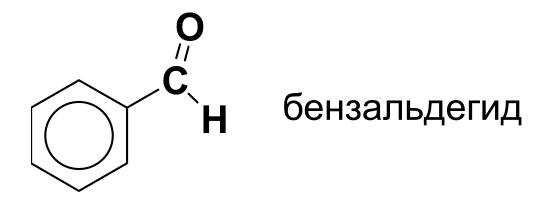
$$CH_3-O-C_2H_5$$
 ì åòèëýòèëî âû é ýô èð



äèô åí èëî âû é ýô èð (òâåðäî å âåù åñòâî)

Изомерны соответствующим спиртам

#### Малореакционноспособные соединения.


Устойчивы к гидролизу, действию разбавленных кислот, сильных оснований.

# **Карбонильные** производные

$$CH_3-C$$
 ýòàí àë ü; àö åòà ë ü ä å ãè ä; óê ñó ñí û é à ë ü ä å ãè ä  $(t_{\hat{e}\hat{e}\hat{i}}=20^0\hat{N})$ 

$$CH_3-CH_2-C$$
Ü i ðî i àí àëü; i ðî i èî í î âû é àëüäåãèä

#### - ароматические альдегиды



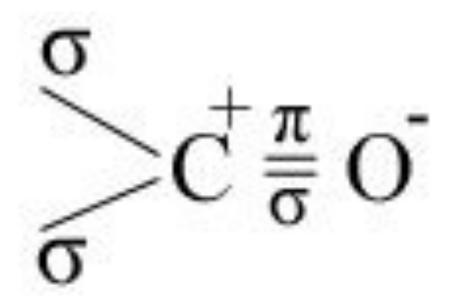
### - алифатические кетоны C<sub>n</sub>H<sub>2n</sub>O

$$\overset{O}{\mathsf{CH}^3}-\overset{O}{\mathsf{C}}-\mathsf{CH}^3$$

ïðîïàíîí; äèì åòèëêåòîí; àöåòîí

$$CH_3-CH_2-CH_2-C-CH_3$$

2-ï åí òàí î í; ì åòèëï ðî ï èëêåòî í


$$CH_3-CH_2-C-CH_3$$

áóòàíîí;ì åòèëýòèëêåòîí

$$CH_2$$
-C-CH<sub>3</sub>

1-ô åí èë-2-ï ðî ï àí î í; ì åòèëáåí çèëêåòî í

## Строение и свойства карбонильной группы



# Химические свойства альдегидов и кетонов

### Реакции окисления

a)

реакции с  $Ag_2O$  и  $Cu(OH)_2$  – качественные на альдегидную группу

б) ароматический бензальдегид окисляется прямо на воздухе:

в) кетоны не окисляются, а в жестких условиях разрушаются.

г) реакция дисмутации (реакция Канниццаро):

$$2 H-C \stackrel{O}{\stackrel{}{}_{H}} \frac{OH^{-}}{H_{2}O} + COOH + CH_{3}OH$$

# Реакции полимеризации и конденсации

а) полимеризация характерна для низших альдегидов:

$$^{\circ}$$
  $^{\circ}$   $^{\circ}$ 

б) сложно-эфирная конденсация (реакция Тищенко):

$$2CH_{3}-C \nearrow O \qquad (C_{2}H_{5}O)_{3}AI \\ H \qquad CH_{3}-C-O-C_{2}H_{5}$$

# в) альдольная конденсация (реакция Бутлерова):

$$CH_3-C + CH_3-C + CH_3-C + CH_3-CH_2-C + CH_2-C + C$$

.

# Реакции присоединения к карбонильной группе

а) присоединение водорода (H<sub>2</sub>/Ni) (восстановление)

$$CH_3-C$$
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_2$ 
 $CH_3$ 

O [H] 
$$OH_1$$
 [H]  $OH_2$   $OH_3$   $OH_3$   $OH_3$   $OH_3$   $OH_3$   $OH_3$   $OH_3$   $OH_3$ 

### б) **+HCN**

HCN – очень слабая кислота. Анион любой слабой кислоты является сильным нуклеофилом.

$$CH_3 - C \longrightarrow CH_3 - C - CN$$

$$CH_3 - C - CN$$

$$H$$

# в) присоединение бисульфита натрия NaHSO<sub>3</sub>

## г) образование полуацеталей и ацеталей:

$$R-C^{O}$$
 +  $CH_3OH$   $\longrightarrow$   $R-C-H$  OCH<sub>3</sub>

# д) аналогично для кетонов идет образование полукеталей и кеталей

# e) Взаимодействие с PCI<sub>5</sub>, PBr<sub>5</sub>, PI<sub>5</sub>

$$R-C \stackrel{O}{\downarrow} + PCl_5 \longrightarrow R-\frac{Cl}{Cl}$$

## ж) Взаимодействие с производными аммиака

# с фенилгидразином $C_6H_5NHNH_2$ :

$$R-C$$
 $H$ 
 $OH$ 
 $R-C$ 
 $NH-NH_2$ 
 $R-C$ 
 $H$ 
 $NH-NH$ 

$$- R - C$$

$$H$$

$$N - NH - C$$

аналогично идут реакции с гидроксиламином (NH<sub>2</sub>OH), с первичными аминами, аминокислотами

# Реакции по связям C-H в алкильном радикале R

### а) кислотность и енолизация

Альдегиды и кетоны с водородным атомом в α-положении к >C=O группе – слабые C-H- кислоты

$$R-CH_2-C$$
  $H$   $R-CH=C$   $H$   $Kemo-енольное равновесие  $\mathring{a}$   $\mathring{i}$   $\ddot{e}$   $(10^{-2}-10^{-6}\%)$$ 

### б) галогенирование альдегидов и кетонов

$$CH_{3} - \overset{\alpha}{C}H_{2} - \overset{\circ}{C} \overset{\circ}{H} + CI_{2} \xrightarrow{-HCI} CH_{3} - \overset{\circ}{C}H - \overset{\circ}{C} \overset{\circ}{H}$$

$$CH_3-C$$
 +  $CI_2$  -HCI -HCI -HCI хлораль

$$CCI_3 - C \le OH OH H$$
 хлоральгидрат

# Получение альдегидов и кетонов

 Окислением первичных спиртов (CuO) получают альдегиды, а при окислении вторичных спиртов – кетоны

• Из дигалогенпроизводных

## КАРБОНОВЫЕ КИСЛОТЫ

(карбоксильные производные)

- Классификация:
- алифатические КК (предельные и непредельные)
- ароматические КК
- гетероциклические КК

- -монокарбоновые кислоты (одноосновные)
- дикарбоновые (двухосновные)
- -поликарбоновые

Содержат карбоксильную группу, ОН связанную с алкильной или арильной группой

# Предельные монокарбоновые кислоты $C_n H_{2n+1} COOH$ <u>Номенклатура</u>

êàï ðî í î âàÿ

CH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>COOH

êàï ðî àò

CH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>COO<sup>-</sup>

 $CH_3(CH_2)_{10}COOH$ 

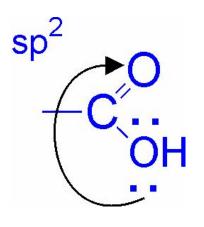
ëàóðèí î âàÿ êèñëî òà

 $CH_3(CH_2)_{14}COOH$ 

ï àëüì èòèíî âàÿ êèñëî òà

 $CH_3(CH_2)_{16}COOH$ 

ñòåàðèí î âàÿ êèñëî òà


#### Изомерия:

CH<sub>3</sub>CH<sub>2</sub>CHCOOH CH<sub>3</sub> α-ì åòèëì àñëÿí àÿ êèñëî òà 2-метилбутановая кислота

CH<sub>3</sub>CHCH<sub>2</sub>COOH CH<sub>3</sub>

β-ì åòèëì àñëÿí àÿ êèñëî òà (èçî âàëåðèàí î âàÿ)

### Строение карбоксильной группы



Группа плоская

$$l_{\rm C=O} = 0,124~{
m HM}$$

$$l_{\text{C-O}} = 0,131 \text{HM}$$

$$l_{\text{O-H}} = 0.095 \text{ HM}$$

Сдвиг электронов к карбонильному атому кислорода приводит к некоторому гашению положительного заряда на атоме углерода, поэтому группа C=O в кислотах не склонна к реакциям присоединения.

Поскольку электронная плотность на атоме кислорода ОН-группы уменьшается, связь О-Н ослабевает, И атом водорода легко отщепляется.

#### ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ

#### 1. Кислотность

$$R-COOH + H_2O \longrightarrow R-COO^- + H_3O^+$$

$$K_{a} = \frac{[RCOO^{-}][H_{3}O^{+}]}{[RCOOH]}$$

$$K_{a \text{ HCOOH}} = 2.10^{-4}$$

$$K_{a CH_{3}COOH} = 1,76^{\cdot}10^{-5}$$

$$0^{1/2}$$
 $R-C''$ 
 $0^{1/2}$ 

#### Солеобразование

Кислоты образуют соли с однозарядными, двухзарядными и трёхзарядными ионами металлов:

$$R-C'_{OH}$$
 + NaOH  $\longrightarrow$   $R-C'_{ONa}$  + H<sub>2</sub>O

### 2. Реакции нуклеофильного замещения в карбоксильной группе -

-получение функциональных производных карбоновых кислот (ОН-группа замещена на группы NH<sub>2</sub>, OR, OC(O)R, CI).

Все они содержат ацильную группу R-C

ацильная группа

ФПКК можно превращать друг в друга, а гидролизом снова превратить в кислоту.

# ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ (ФПКК)

#### І. Сложные эфиры

ýô èðû - æèäêî ñòè í /ð â âî äå d<1 ô ðóêòî âû é çàï àõ

ΪÎËÓ×ÅĺÈÅ:

Đåàêöèÿ ýòåðèô èêàöèè

$$R-C$$
OH
 $+ R'OH$ 
 $\longrightarrow$ 
 $R-C$ 
OR'
 $+ H_2O$ 

#### **II.** Хлорангидриды

ΪÎ ËÓ×ÅÍ ÈÅ:

Èçêèñëî ò:

#### III. Ангидриды

$$\begin{array}{ccc} R-C-O-C-R \\ II & II \\ O & O \end{array}$$

R-C-O-C-R  $\Rightarrow$   $\ddot{a}$   $\ddot{a}$ 

ÏÎËÓ×ÅÍÈÅ:

$$CH_3-C$$
 $CI$ 
 $CH_3-C$ 
 $CI$ 
 $CH_3-C$ 
 $CI$ 
 $CH_3CO)_2O$ 
 $CH_3CO)_2O$ 
 $CH_3CO)_2O$ 

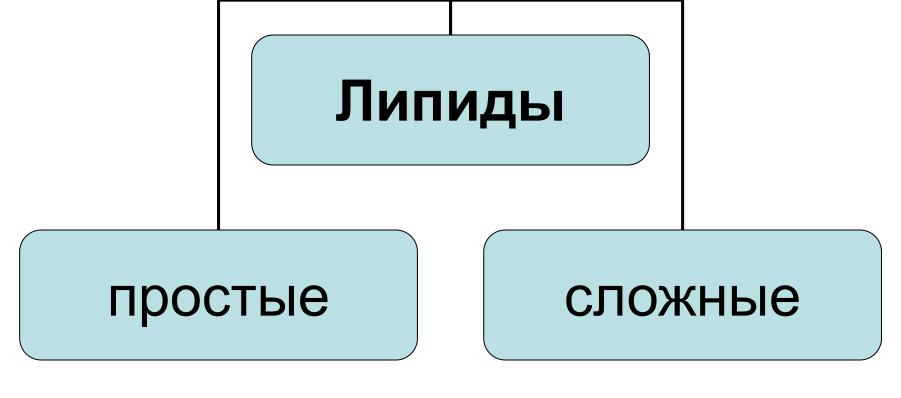
#### IV. Амиды

$$R-C_{NH_2}^{\nearrow O}$$

ΪÎ ËÓ×Åĺ ÈÅ:

Èçàììîíèéíûõñîëåé êàðáîíîâûõêèñëìò:

$$R-C \stackrel{\bigcirc{O}}{\stackrel{\bigcirc}{=}} \frac{220^{0}C}{\text{$\hat{a}$ $\circ$i $\hat{e}$a$ $NH}_{3}} R-C \stackrel{\bigcirc{O}}{\stackrel{\bigcirc}{=}} + H_{2}O$$


# Липиды

содержатся в животных и растительных тканях

Большая группа соединений, содержащих в своем составе сложно-эфирную связь, нерастворимых в воде и выполняющих в организме ряд важных функций

# Структурные компоненты липидов

- СПИРТЫ
- ВЫСШИЕ ЖИРНЫЕ КАРБОНОВЫЕ КИСЛОТЫ
- другие вещества



СПИРТЫ ВЫСШИЕ ЖИРНЫЕ КК СПИРТЫ ВЫСШИЕ ЖИРНЫЕ КК другие вещества

# спирты

- высшие одноатомные (С<sub>16</sub> и более)
- трёхатомный спирт глицерин

$$\mathsf{CH}_2 ext{-}\mathsf{OH}$$
  
 $\mathsf{HO}-\mathsf{CH}$   
 $\mathsf{CH}_2 ext{-}\mathsf{OH}$ 

• двухатомный спирт сфингозин

$$CH_3$$
— $(CH_2)_{12}$ — $CH$ = $CH$ — $CH$ — $CH$ — $CH$ - $CH_2OH$ 
 $OH$   $NH_2$ 

транс-

# Простые липиды

- ВОСКИ
- жиры и масла
- церамиды
- стериды

## ВОСКИ

- сложные эфиры высших жирных кислот и высших одноатомных спиртов:

## жиры и масла

# (триацилглицерины)

 сложные эфиры глицерина и высших жирных КК

- простые 
$$(R_1 = R_2 = R_3)$$

- смешанные

# церамиды

- N-ацилированные производные спирта сфингозина

### стериды

- сложные эфиры высокосмолекулярного циклического спирта **стерола** и высокомолекулярной КК

### жиры и масла

тристеарин (тристеароилглицерин) триолеин (триолеилглицерин)

$$\begin{array}{c} O \\ CH_2-O-C-C_{17}H_{33} \\ O \\ CH-O-C-C_{15}H_{31} \\ O \\ CH_2-O-C-C_{17}H_{35} \end{array}$$

1-олео-2-пальмитостеарин (1-олеоил-2-пальмитоил-3-стеароилглицерин)

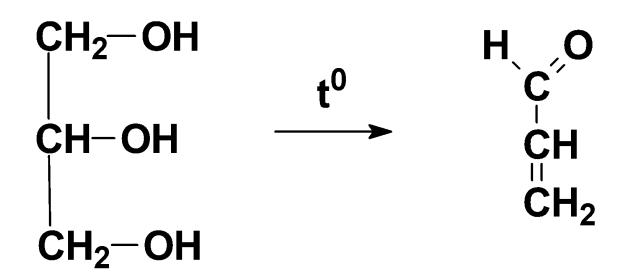
## Высшие непредельные кислоты

|                                      | Т.н.        | Название           |
|--------------------------------------|-------------|--------------------|
|                                      |             | кислотного остатка |
| C <sub>17</sub> H <sub>33</sub> COOH | Олеиновая   | Олеат              |
| C <sub>17</sub> H <sub>31</sub> COOH | Линолевая   | Линолят            |
| C <sub>17</sub> H <sub>29</sub> COOH | Линоленовая | Линоленат          |

#### химические свойства

- гидрогенизация

$$\begin{array}{c} \mathsf{CH_2-O-C-C_{17}H_{33}} \\ \mathsf{CH-O-C-C_{17}H_{33}} \\ \mathsf{CH_2-O-C-C_{17}H_{33}} \\ \mathsf{CH_2-O-C-C_{17}H_{33}} \\ \mathsf{CH_2-O-C-C_{17}H_{33}} \end{array} + 3\mathsf{H_2} \xrightarrow{t^0} \begin{array}{c} \mathsf{CH_2-O-C-C_{17}H_{35}} \\ \mathsf{CH_2-O-C-C_{17}H_{35}} \\ \mathsf{CH_2-O-C-C_{17}H_{35}} \\ \mathsf{CH_2-O-C-C_{17}H_{35}} \end{array}$$


# - непредельные кислоты в составе жира обесцвечивают раствор КМпО<sub>4</sub>, вступают в реакции присоединения, например, галогенов

 Иодное число – мера ненасыщенности триацилглицеринов. Оно соответствует массе (г) иода, которое может присоединиться к 100 г вещества.

| жир                | иодное число |  |
|--------------------|--------------|--|
| сливочное масло    | 30           |  |
| жир человека       | 64           |  |
| подсолнечное масло | 130          |  |

#### - гидролиз жира

#### - акролеиновая проба



## Биологическая роль жиров

- Энергетическая
- Структурная
- Резервная
- Механическая защита внутренних органов от повреждений
- Термоизоляционная
- Источник эндогенной воды
- Растворяют жирорастворимые витамины (A,D,E,K)

## Сложные липиды

- Фосфолипиды
- Сфинголипиды
- Гликолипиды

## Фосфолипиды

- липиды, при гидролизе отщепляющие фосфорную кислоту

Глицерофосфолипиды - сложные эфиры глицерина с высшими жирными кислотами и фосфорной кислотой. В состав фосфолипидов входят также азотсодержащие соединения, такие как холин, этаноламин или серин.

• Глицерофосфолипиды – главные липидные компоненты клеточных мембран. Они сопутствуют жирам в пище и служат источником фосфорной кислоты, необходимой для жизни человека.

• Глицерофосфолипиды являются производными фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения.

фосфатидная кислота

#### глицерофосфолипид

Как правило, в положении 1 – остаток насыщенной, а в положении 2 – остаток ненасыщенной кислоты 123

## $R_3$

| NH <sub>2</sub><br>HOCH <sub>2</sub> -CH-COOH                      | серин      | фосфатидилсерин                     |
|--------------------------------------------------------------------|------------|-------------------------------------|
| HO-CH <sub>2</sub> -CH <sub>2</sub> -NH <sub>2</sub>               | этаноламин | фосфатидилэта-<br>ноламин (кефалин) |
| HOCH <sub>2</sub> CH <sub>2</sub> N(CH <sub>3</sub> ) <sub>3</sub> | холин      | фосфатидилхолин<br>(лецитин)        |
| OH<br>HO OH<br>OH                                                  | инозит     | фосфатидилинози-<br>тол             |

#### лецитин

Из всех липидов глицерофосфолипиды обладают полярными свойствами. При помещении глицерофосфолипидов в воду в истинный раствор переходит лишь небольшая их часть, основная же масса липидов находится в виде мицелл.

## Биологическая роль фосфолипидов

- Структурная входят в состав клеточных мембран
- Повышают растворимость холестерина и способствуют его выведению из организма
- Препятствуют синтезу жира в печени