химическая связь

План лекции

- 1.Виды химической связи:
- •ковалентные связи (полярная, неполярная)
- •ионная
- •металлическая
- •водородная
 - 2. степень окисление элементов.

1. ХИМИЧЕСКАЯ СВЯЗЬ

Химическая связь — это взаимодействие атомов, обусловленное перекрыванием их электронных облаков и сопровождающееся уменьшением полной энергии системы.

«Под *химической связью* следует понимать силу, удерживающую атомы друг около друга в молекулах, ионах или кристаллах»

2. ПОЧЕМУ ОБРАЗУЕТСЯ ХИМИЧЕСКАЯ СВЯЗЬ?

Ответ вытекает из следующего термодина-мического принципа:

«минимуму энергии системы соответствует максимум устойчивости»

Иными словами молекулярное состояние вещества устойчивее, чем атомное.

3. ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ

Главная роль в образовании химических связей принадлежит электронам внешней оболочки, так называемым валентным электронам.

ПРАВИЛО ОКТЕТА (Льюис, 1875-1946)

При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа (ns²np6).

ОБРАЗОВАНИЕ ОКТЕТА

1. Обобществление электронов (ковалентная связь)

$$:CI + CI: → (:CI:)$$

$$3s^{2}3p^{5} 3s^{2}3p^{5} 3s^{2}3p^{6} 3s^{2}3p^{6}$$

2. Перенос электрона (ионная связь)

Na' + 'Cl:
$$\rightarrow$$
 Na': Cl: \rightarrow Na': Cl: \rightarrow 2 $s^22p^53s^1$ 3 s^23p^5 2 s^22p^6 3 s^23p^6 электронный октет

СВОЙСТВА ХИМИЧЕСКОЙ СВЯЗИ. ЭНЕРГИЯ И ДЛИНА СВЯЗИ.

<u>Энергией</u> химической связи E_{cs} кДж/моль называется количество энергии, выделяющееся при образовании химической связи. Чем больше энергия химической связи, тем устойчивее молекулы.

Длиной связи называется межъядерное расстояние взаимодействующих атомов. Она зависит от размеров электронных оболочек и степени их перекрывания.

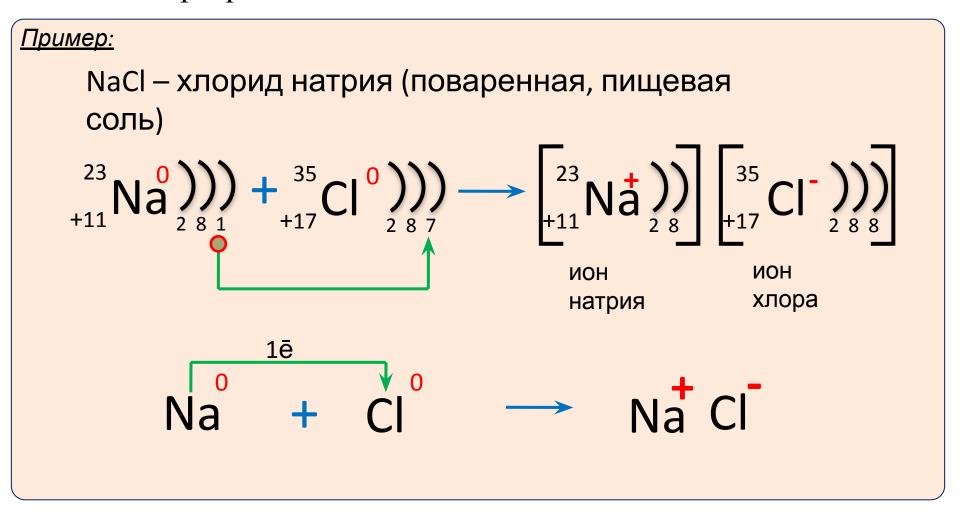
С уменьшением длины связи обычно увеличивается энергия связи и соответственно устойчивость молекул.

типы химической связи

ОСНОВНЫЕ ТИПЫ:

- 1. Ионная
- **2. Ковалентная** (полярная и неполярная; по обменному и донорно-акцепторному механизмам),
- 3. Металлическая.

КРОМЕ ТОГО, МЕЖДУ МОЛЕКУЛАМИ ВОЗНИКАЮТ:


- 1. Водородная химическая связь.
- 2. Вандерваальсовы взаимодействия.

ионная связь

Ионная химическая связь - электростатическое взаимодействие отрицательно и положительно заряженных ионов в химическом соединении.

Такая связь возникает в случае **большой разности ЭО атомов**, например между **катионами металлов** и **анионами неметаллов** (LiF, CsCl, K_2 O и др.).

• Если разность ЭО атомов велика, то электронная пара, осуществляющая связь, переходит к более ЭО атому, и оба атома превращаются в ионы.

ОТНОСИТЕЛЬНАЯ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ АТОМОВ

2,1	ATOMOB					
Li 0,98	Be 1,5	B 2,0	C 2,5	N 3,07	O 3,5	F 4,0
Na 0,93	Mg 1,2	AI 1,6	Si 1,9	P 2,2	S 2,6	CI 3,0
K 0,91	Ca 1,04	Ga 1,8	Ge 2,0	As 2,1	Se 2,5	Br 2,8
Rb 0,89	Sr 0,99	In 1,5	Sn 1,7	Sb 1,8	Te 2,1	I 2,6

Ионная связь образуется только между атомами таких элементов, которые значительно отличаются по своей ЭО (разность >1,7). Однако полного перехода электронов от одних атомов к другим не происходит.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1.

Определить разность относительных электроотрицательностей атомов для связей H - O и O - 3 в соединениях $3(OH)_2$, где 3 - Mg, Ca или Sr, и определить:

а) какая из связей H — О или О — Э характеризуется в каждой молекуле большей степенью ионности;

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Решение 1. По данным табл. ЭО вычисляем разность электроотрицательностей Δ ЭО для связей О-Э: Δ ЭО(Mg-O) = 3,5 - 1,2 = 2,3; Δ ЭО(Ca-O) = 3,5 - 1,04 = 2,46; Δ ЭО(Sr-O) = 3,5 — 0,99 = 2,51. Разность ЭО для связи О-Н составляет 1,4.

Таким образом: а) во всех рассмотренных молекулах связь Э-О более полярна, т. е. характеризуется большей степенью ионности.

КОВАЛЕНТНАЯ СВЯЗЬ

<u>Ковалентная связь</u> – связь, образуемая парой электронов, распределенной (обобществленной) между двумя или большим числом атомов.

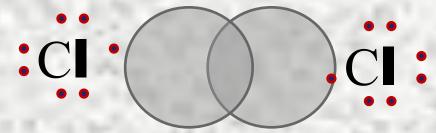
неполярная:

между атомами неметаллов с одинаковой ЭО

полярная:

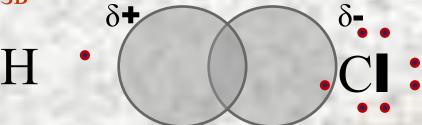
между атомами неметаллов с

разной ЭО


Ковалентная связь

неметалл + неметалл

$$(1 + 17)_2)_8)_7$$


Ковалентная

неполярная связь

Ковалентная

полярная связь

КОВАЛЕНТНАЯ СВЯЗЬ.

Существуют два принципиальных механизма образования ковалентной связи:

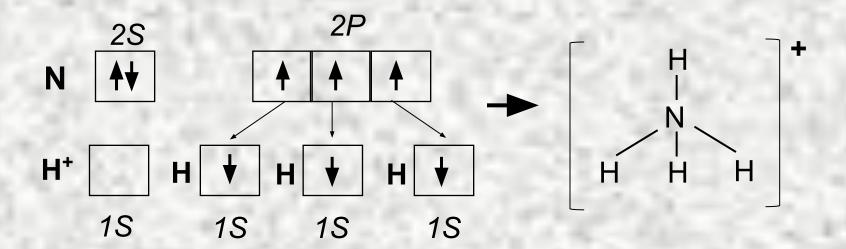
1. Обменный:

$$1s^{1} \qquad 1s^{1} \qquad 1s^{2} 1s^{2}$$

$$H_{A} \qquad + \qquad H_{B} \qquad \qquad H : H$$

2. Донорно-акцепторный:

A:
$$+ \Box B \rightarrow A - B$$


2. ДОНОРНО – АКЦЕПТОРНЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ КОВАЛЕНТНОЙ СВЯЗИ

ПРИМЕР: Рассмотрим образование иона аммония:

$$NH_3 + H^+ \rightarrow NH_4^+$$

ОБРАЗОВАНИЕ ИОНА АММОНИЯ: АЛЬТЕРНАТИВНАЯ СХЕМА

$$\Box \mathbf{H^+} + : \mathbf{NH_3} \rightarrow \mathbf{NH_4^+}$$

ВАЛЕНТНОСТЬ

атомы элементов могут образовывать лишь ограниченное число химических связей.

Валентность - Способность атома присоединять или замещать определенное число других атомов с образованием химических связей.

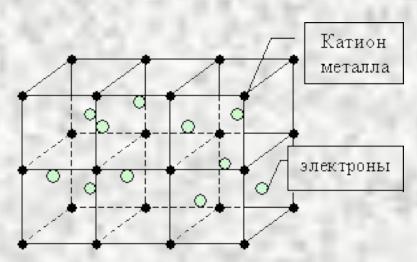
НАСЫЩАЕМОСТЬ КОВАЛЕНТНОЙ СВЯЗИ. ВАЛЕНТНОСТЬ.

Значение валентности определяется наличием

одно-, двуэлектронных облаков и свободных орбиталей (с учетом обменного и Д-А механизма образования ковалентной связи)

КРАТНОСТЬ СВЯЗИ

Кратность связи определяется числом общих электронных пар.


Так кратность связи в молекуле хлороводорода (H-CI) равна одному, кратность связи углеродуглерод в молекуле этилена ($H_2C=CH_2$) равна двум, в молекуле азота ($N \equiv N$) – трем:

Таким образом по кратности ковалентные связи подразделяются на *одинарные* (или простые), *двойные* и *тройные*.

Металлическая связь

Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов.

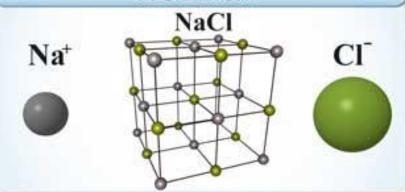
Металлическая кристаллическая решетка и металлическая связь определяют такие свойства металлов: *ковкость*, пластичность, электро- и теплопроводность, металлический блеск, способность к образованию сплавов.

Водородная связь

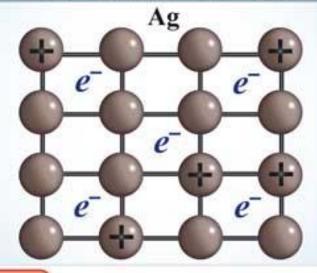
- Это связь между положительно заряженным атомом водорода одной молекулы и отрицательно заряженным атомом другой молекулы.
- Водородная связь имеет частично электростатический, частично донорно-акцепторный характер.

Наличие водородных связей объясняет высокие температуры кипения воды, спиртов, карбоновых кислот.

химическая связь


ковалентная

полярная H→Cl δ+..δ-H:Cl:


неполярная СІ-СІ

ионная

металлическая

водородная

8 RNMNX

Таблица №12 (24)

0

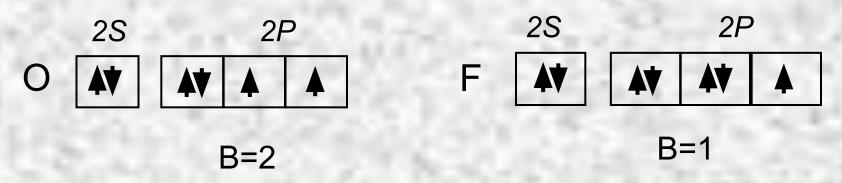
Street Street Street Street

THE PART OF PERSONS ASSESSMENT AND PARTY.

Как определить вид связи в веществе?

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

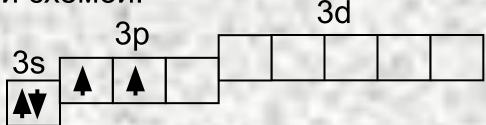

Пример 1.

Определите максимальную валентность кислорода и фтора.

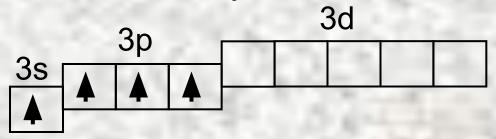
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Решение.

Кислород и фтор во всех соединениях проявляют постоянную валентность, равную двум для кислорода и единице для фтора. Валентные электроны этих элементов находятся на втором энергетическом уровне, где нет свободных орбиталей:



Пример 2.


Какую валентность проявляет атом кремния?

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Решение. Электронная конфигурация атома кремния 1s²2s²2p⁶3s²3p². Электронное строение его валентных орбиталей в основном (невозбужденном) состоянии может быть представлено следующей графической схемой:

При возбуждении атом кремния переходит в состояние $1s^22s^22p^63s^13p^3$, а электронное строение его валентных орбиталей соответствует схеме:

Степень окисления

Степень окисления - это условный заряд атомов, вычисленный из предположения, что вещество состоит только из ионов.

Степень окисления простых веществ равна О

Атомное

строение:

 S^0 , P^0 , Si^0

Молекулярное

строение:

$$Cl_2^0, O_2^0, N_2^0$$

Степень окисления элементов в сложных веществах отлична от О.

Правила определения с.о.

- С.о. атомов в простых веществах = 0
- С.о. фтора = -1
- С.о. кислорода = -2 (кроме $H_2O_2^{-1}$, $O^{+2}F_2$)
- C.o. водорода = +1 (кроме MeH⁻¹)
- C.o.Me I, II, III групп = номеру группы

Промежуточные с.о.

- Рассмотрим возможные с.о. серы S
- Максимальная +6 SO₃
- Минимальная -2 H₂S
- Сера может проявлять с.о. 0,+2,+4 это промежуточные с.о.

Суммарная степень окисления в молекуле всегда равна 0

+1 -2

Na₂O

+3 -1

AICI₃

+2 -1

BaH₂

Определение с.о.

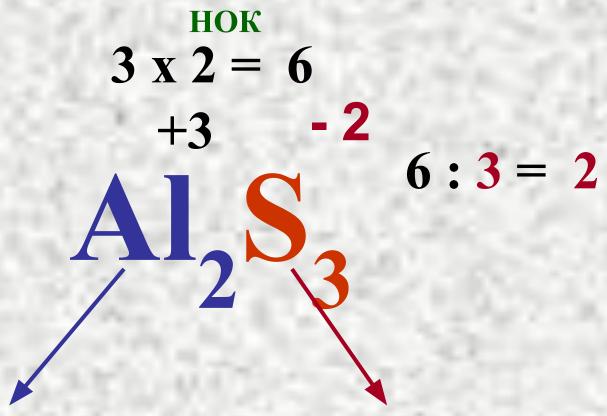
N₂O₃

На первом месте стоит элемент с «+» с.о., на втором с «-»

У кислорода постоянная с.о.=-2

У азота переменная с.о.

N₂O₃


$$+2*x + 3*(-2) = 0$$

$$2*x = 6$$

$$X=+3$$

$$N_2O_3$$

Алгоритм определения степени окисления

Металл – положительная СО

Находится в III A группе - +3

Неметалл – переменная СО

Отрицательная

Алгоритм определения с.о.

Сумма степеней окисления в молекуле равна

Бинарные соединения.

• Бинарные соединения – это соединения, состоящие из двух химических элементов.

Названия бинарных соединений.

• На первом месте в названии бинарного соединения записывается латинское название элемента с отрицательной степенью окисления с суффиксом -ид, а затем название элемента с положительной степенью окисления в родительном падеже.

Названия бинарных соединений.

<u>Названия элементов с отрицательной</u> <u>степенью окисления:</u>

- CI хлорид
- О оксид
- Н гидрид
- S сульфид
- N нитрид
- Р фосфид
- С карбид
- Br бромид

Задание 2: назвать бинарные соединения, формулы которых даны.

```
+1 -1
NaCl - Хлорид натрия
                                    Численное
                                    значение
+2 -1
                                    степени
SCI2 -
            Хлорид серы (II)
                                    окисления для
                                    элементов с
                                    переменной
                                    степенью
CuO
                                    окисления.
            Оксид меди (II)
Cu<sub>2</sub>O -
             Оксид меди (I)
```

Бинарные соединения.

 На первом месте всегда записывается элемент с положительной степенью окисления, а на втором - с отрицательной.

+2 -2

CuO

оксид углерода (IV).

1) Записать символы химических элементов образующих соединение:

CO

оксид углерода (IV).

2) Над атомами химических элементов в соединении проставить их степени окисления (в скобках указана переменная степень окисления элемента – она положительна):

+4 -2

CO

3) Найти наименьшее общее кратное между значениями степеней окисления:

CO

4) Определить индексы, разделив НОК на значения степеней окисления каждого элемента.

CO₂ - оксид углерода (IV)

Задание: Составить формулы веществ по названиям.

• Сульфид лития - Li₂S

• Оксид серы (IV) -

• Оксид азота (V) –

• Оксид железа (III) -

 SO_2

 N_2O_5

Fe₂O₃

Задание для самостоятельной подготовки:

- Назвать вещества:
 - NO, N_2O_3 , PCl_3 , PCl_5 , $CuCl_2$.
- Составить формулы веществ по названиям:
 - 1) хлорид кальция
 - 2) оксид хрома (VI)
 - 3) сульфид железа (II)

Задание для самостоятельной подготовки:

- 1) ОПРЕДЕЛИТЕ ВИД ХИМИЧЕСКОЙ СВЯЗИ
- 2) ОПРЕДЕЛИТЕ СТЕПЕНЬ ОКИСЛЕНИЯ ATOMOB В МОЛЕКУЛАХ
- 3) напишите электронные формулы атомов (учитывая степень окисления), образующих данную молекулу;

KI F₂
OF₂ SeO
BCI₃ K

Задание для самостоятельной подготовки:

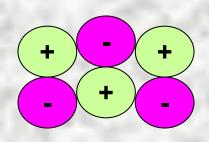
Определить степень окисления в соединениях К₂O, AIH₃, CaF₂

+1 -2

 K_2O

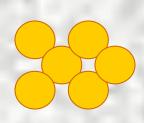
+3 -1

AlH₃

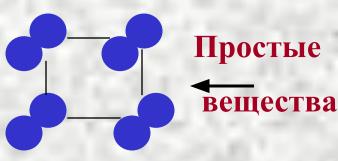

+2 -1

CaF₂

СПАСИБО ЗА ВНИМАНИЕ!

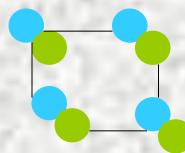


Ионная связь



 $Na^{+1}CI^{-1}$, $Ca^{+2}F^{-1}_{2}$, $Na^{+1}_{2}O^{-2}$

Ковалентная неполярная связь


 S^0 , P^0 , Si^0

 $Cl_2^{\ 0}, O_2^{\ 0}, N_2^{\ 0}$

Ковалентная полярная связь

$$H^{+1}F^{-1}, H^{+1}_{2}O^{-2}$$


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 2.

Какую валентность проявляет атом хлора?

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Решение . Хлор проявляет переменную валентность 1, 3, 5, 7, так как на 3-м энергетическом уровне имеются свободные **d-орбитали**, куда могут расспариваться спаренные 3s- и 3p-электроны.

