# Характеристика и технология производства основных катализаторов нефтепереработки

1

### Классификация гидроксидов и оксидов алюминия

### Гидроксиды алюминия

Модификации тригидроксида алюминия Al(OH)<sub>3</sub>: наиболее часто встречаются гиббсит (гидраргиллит), байерит и нордстрандит.

Моногидроксид алюминия AlO(OH): известны диаспор и бемит.



Схематическое изображение оксида алюминия: а – цепь А1ООН; б – вид сбоку цепи А1ООН; в – вид сбоку антипараллельных цепей А1ООН

Хорошо окристаллизованный  $450^{\circ}$ С  $600^{\circ}$ С  $1050^{\circ}$ С  $1200^{\circ}$ С бемит  $\rightarrow \gamma \rightarrow \delta \rightarrow \theta(+\alpha) \rightarrow \alpha$ -A1<sub>2</sub>O<sub>3</sub> Гелеобразный бемит  $300^{\circ}$ С  $900^{\circ}$ С  $1000^{\circ}$ С  $1200^{\circ}$ С (псевдобемит)  $\rightarrow \gamma \rightarrow \delta \rightarrow \theta(+\alpha) \xrightarrow{2} \alpha$ -A1<sub>2</sub>O<sub>3</sub>

### Оксиды алюминия

Основные кристаллические фазы  $Al_2O_3$ :  $\alpha$ ,  $\chi$ ,  $\gamma$ ,  $\delta$ ,  $\eta$ ,  $\theta$  и др.

**Низкотемпературные оксиды,**  $\gamma$ -группа A1<sub>2</sub>O<sub>3</sub>·xH<sub>2</sub>O, где 0 < x < 0,6. Получают при температурах прокаливания до 600<sup>o</sup>C. Это оксиды  $\gamma$ ,  $\eta$ ,  $\rho$ ,  $\chi$ . Решетки  $\gamma$ - и  $\eta$ -оксидов очень близки по строению к решетке шпинели MgAl<sub>2</sub>O<sub>4</sub>. Элементарная ячейка образована в результате кубической плотнейшей упаковки 32 атомов кислорода. В  $\gamma$ -оксиде алюминия по 24 катионным позициям (16 октаэдрических и 8 тетраэдрических) распределено 21 атомов алюминия. Решетка шпинели по рентгенографическим данным сильно разупорядочена.

**Высокотемпературные оксиды** – почти безводный A1<sub>2</sub>O<sub>3</sub>. Это δ - группа оксидов. Температура их получения от 900 до 1000<sup>0</sup>C.

**Корунд** α-A1<sub>2</sub>O<sub>3</sub> имеет наиболее плотную упаковку компонентов кристаллической решетки. У корунда полностью отсутствуют ОН- группы.

### Получение гидроксида алюминия на глиноземных заводах

Сырье для производства тригидрата алюминия - боксит A1(OH), и нефелин Na[AlSiO<sub>4</sub>].

Спекание нефелина с известняком при 1200<sup>0</sup>C:  $Na[AlSiO_4] + CaCO_3 \rightarrow CaSiO_3 + NaAlO_2 + CO_2 \uparrow$ 

Массу выщелачивают водой: NaAlO<sub>2</sub> + 4H<sub>2</sub>O → Na[Al(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]

Через раствор пропускают CO<sub>2</sub>, остающийся при прокаливании: Na[Al(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>] + CO<sub>2</sub>  $\rightarrow$  NaHCO<sub>3</sub> + Al(OH)<sub>3</sub>  $\downarrow$  + 2H<sub>2</sub>O

### Получение гидроксида алюминия переосаждением тригидрата

### Алюминатный метод.

Тригидрат алюминия растворяют в щелочи:

 $Al(OH)_3 + NaOH + 2H_2O \rightarrow Na[Al(OH)_4(H_2O)_2]$ 

Модуль раствора алюмината – мольное отношение  $Na_2O/Al_2O_3 = 1.8 \div 2.0$ .

Осаждение гидроксида азотной кислотой:

Na[Al(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>] + HNO<sub>3</sub> → Al(OH)<sub>3</sub> ↓ + NaNO<sub>3</sub> + 2H<sub>2</sub>O Сульфатный метод.

Используется раствор  $Na[Al(OH)_4(H_2O)_2]$ 

и раствор сульфата алюминия:

 $2\mathrm{Al(OH)}_3 + 3\mathrm{H}_2\mathrm{SO}_4 \rightarrow \mathrm{Al}_2(\mathrm{SO}_4)_3 + 6\mathrm{H}_2\mathrm{O}$ 

Осаждение гидроксида:

 $6Na[Al(OH)_4(H_2O)_2] + Al_2(SO_4)_3 = 8Al(OH)_3 \downarrow + 3Na_2SO_4 + 12H_2O_4$ 

### Получение гидроксида алюминия гидролизом алкоголятов CONDEA (в настоящее время SASOL)

Синтез триэтилалюминия Al +  $1/2H_2 + 3C_2H_4 \rightarrow Al(C_2H_5)_3$ 

Рост цепи Al(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub> + 3nC<sub>2</sub>H<sub>4</sub>  $\rightarrow$  Al[(C<sub>2</sub>H<sub>4</sub>)<sub>n</sub>C<sub>2</sub>H<sub>5</sub>]<sub>3</sub>

Окисление триалкилалюминия AlR<sub>3</sub> +  $3/2O_2 \rightarrow Al(OR)_3$ 

Гидролиз алкоголята Al(OR)<sub>3</sub> + 3H<sub>2</sub>O → Al(OH)<sub>3</sub>↓ + 3ROH

### Методы формования гидроксида алюминия

- 1. Формование экструзией
- 2. Углеводородно-аммиачная формовка
- 3. Масляная формовка (фирма UOP)



3.

Устройство для формования катализаторов и носителей методом экструзии. 1- стакан; 2- фильера с отверстиями; 3 – поршень; 4 – штурвал; 5 – формуемая масса; 6 – накидная гайка; 7

– опора для крепления устройства.

$$2Al + HCl + 5H_2O = A1_2(OH)_5Cl + 3H_2$$
$$(CH_2)_6N_4 + 6H_2O \leftrightarrow 6CH_2O + 4NH_3$$
$$A1_2(OH)_5Cl + NH_3 + H_2O \rightarrow 2A1(OH)_3 + NH_4Cl$$

### Пористая структура катализаторов и носителей

1. Для определения <u>удельной поверхности</u> (м<sup>2</sup>/г) измеряют физическую адсорбцию.

Уравнение полимолекулярной физической адсорбции (БЭТ)



2. <u>Удельный объем пор</u> катализатора : Vуд. =  $\frac{V}{m}$ 

где Vуд. – удельный объем пор катализатора, см<sup>3</sup>/г; V – объем пор частиц, см<sup>3</sup>; m – масса навески, г.

3. Распределение пор по радиусам (эффективный радиус пор. Å или нм)



Удельные изотермы адсорбции и десорбции и схематическое изображение бутылкообразной поры:

*а* - удельные изотермы адсорбции пара *н*-пентана при 298 К в расчете на 1 м<sup>2</sup> поверхности на молотом кварце и на плавленых шариках кварцевого стекла (1), на силикагеле (2), десорбции на силикагеле (3); *б* - кривая адсорбции (1) и десорбции (2) на пористом теле; *в* - схематическое изображение бутылкообразной поры **Уравнение Кельвина:**  $\ln \frac{p}{p_0} = -\frac{2\sigma V_{ML} \cos \varphi}{r_p RT}$ 

Каждой точке изотермы адсорбции отвечает некоторое значение  $r_{\rm p}$ 

где *p* – равновесное давление адсорбата; *p*<sub>0</sub> – давление насыщенного пара адсорбата при температуре эксперимента; *V*<sub>ML</sub> – мольный объем адсорбата в жидком состоянии; σ - поверхностное натяжение; **φ** - угол смачивания; r<sub>p</sub> – радиус поры; *R* – универсальная газовая постоянная; *T* – температура эксперимента, К.

Из изотермы адсорбции  $V_{ads}=f(p)$  можно рассчитать структурную кривую  $V_{ads}=f(r_p)$ 



Изотерма адсорбции и кривые зависимости объема пор от их радиуса: *а* - изотерма адсорбции; *б* - интегральная (1) и дифференциальная (2) кривые зависимости объема пор от их радиуса

Распределение объема пор в η-Al<sub>2</sub>O<sub>3</sub> (радиус пор в нм) 10

# Методы регулирования пористой структуры оксида алюминия и катализаторов на его основе

Влияние pH среды в конце осаждения на пористую структуру A1<sub>2</sub>O<sub>3</sub>

| <u>№</u><br>образ- | рН<br>среды | Кажущийся<br>удельный  | Объем пор,<br>см <sup>3</sup> /г |              | Эффектив-<br>ный радиус |  |
|--------------------|-------------|------------------------|----------------------------------|--------------|-------------------------|--|
| ца                 |             | вес, г/см <sup>3</sup> | общий                            | макр<br>опор | пор, А                  |  |
| 1                  | 4,5         | 1,34                   | 0,1                              | Нет          | 10                      |  |
| 2                  | 8,2         | 1,22                   | 0,48                             | 0,1          | 30                      |  |
| 3                  | 10,0        | 0,8                    | 1,0                              | 0,7          | -                       |  |

Влияние условий старения на пористую структуру A1<sub>2</sub>O<sub>3</sub>

| N⁰ | Условия старения |                     | Объем пор, см <sup>3</sup> /г |                |                | Площадь                           |
|----|------------------|---------------------|-------------------------------|----------------|----------------|-----------------------------------|
|    | pН               | Длитель-<br>ность,ч | общий                         | макро-<br>поры | микро-<br>поры | поверхности,<br>м <sup>2</sup> /г |
| 1  | 9                | 17                  | 1,30                          | 0,44           | 0,86           | 190                               |
| 2  | 9                | 15                  | 0,85                          | 0,44           | 0,38           | 190                               |
| 3  | 7                | 1                   | 0,41                          | 0,50           | -              | 235                               |

### Старение гидроокиси алюминия, находящейся в контакте с раствором аммиака при рН 9 при 30<sup>0</sup>С

| Длительность<br>старения, ч | г H <sub>2</sub> O на<br>100 г А1 <sub>2</sub> O <sub>3</sub> | Удельная<br>поверхность, м <sup>2</sup> /г | Структура по<br>рентгенограмме |
|-----------------------------|---------------------------------------------------------------|--------------------------------------------|--------------------------------|
| 0                           | 81,3                                                          | < 1                                        | Аморфная                       |
| 1                           | 40,2                                                          | 12                                         | Гелеобразный<br>бемит          |
| 44                          | 27,8                                                          | 201                                        | То же                          |
| 166                         | 26,7                                                          | 230                                        | « «                            |
| 290                         | 26,2                                                          | 242                                        | То же,<br>+ байерит            |

## Влияние концентрации сложного эфира на качество сферического оксида алюминия

| Наименование                  | Ед.<br>изм.            | Концентрация сложного эфира, % об. |      |      |      |      |      |      |
|-------------------------------|------------------------|------------------------------------|------|------|------|------|------|------|
| показателеи                   |                        | 0                                  | 10   | 20   | 40   | 60   | 80   | 100  |
| Общий объем пор               | см <sup>3</sup> /г     | 0,68                               | 0,92 | 1,10 | 1,25 | 1,56 | 2,01 | 2,10 |
| Эффективный<br>радиус пор     | НМ                     | 5,0                                | 8,5  | 10,5 | 12,0 | 14,5 | 19,4 | 21,2 |
| Удельная<br>поверхность       | <b>M<sup>2</sup>/Γ</b> | 320                                | 287  | 279  | 270  | 260  | 259  | 257  |
| Прочность на<br>раздавливание | кг/шар                 | 11,0                               | 9,9  | 7,8  | 5,4  | 4,4  | 4,1  | 4,0  |

### Методы исследования катализаторов

1. Физико-механические характеристики катализаторов



Прибор для определения механической прочности гранул катализатора методом раздавливания:

1 – стойка; 2 - рейка; 3 - противовес; 4 – стальной нож; 5 – подставка; 6 -

сменные грузы

- 2. Химический состав катализаторов
- 3. Методы измерения каталитической активности катализаторов

3.1. Статические методы.

3.2. Проточные методы (*идеальное вытеснение* или *полное смешение* реакционной смеси вдоль реактора).

### Лабораторные реакторы и установки для определения активности катализаторов



Схема импульсной микрокаталитической установки 1 - баллон с водородом; 2 - редуктор; 3 - запорный вентиль; 4 - блок подготовки водорода; 5 регулятор водорода; 6 - вентиль тонкой регулировки; 7 - испаритель; 8 - микрореактор; 9 пламенно-ионизационный детектор; 10 - катализатор; 11 - электрообмотка; 12 - ЛАТР; 13 контрольная термопара; 14 - АЦП; 15 - вентиль тонкой регулировки; 16 - ротаметр; 17 капиллярная колонка; 18 - термостат; 19 - микрокомпрессор; 20 - фильтр; 21 – ПВМ



Схема проточной установки под давлением водорода для испытания каталитической активности

1 – баллон с водородом; 2 – редуктор; 3, 12, 16 – вентили тонкой регулировки; 4 – манометр; 5 – бюретка с сырьем; 6 – поршневой насос для подачи сырья; 7 – реактор; 8, 10 – слой инертного материала (фарфора); 9 – катализатор; 11 – силовая обмотка реактора; 13 – лагометр; 14 – регистрирующий прибор; 15 – контролирующая термопара; 17 – сепаратор; 18 – поглотитель сероводорода; 19 – газовый бчетчик

### Катализаторы гидроочистки

#### Термодинамика и кинетика реакций гидроочистки





Зависимость константы равновесия реакции восстановления сернистых соединений водородом с образованием насыщенных углеводородов и сероводорода от температуры: 1- этантиол; 2 – тиациклогексан; 3 – 2-тиабутан; 4 – тиофен; 5 – 3,4-дитиагексан

### Механизм реакций



Схема реакции гидрообессеривания тиофена:

числа в скобках – приблизительные скорости [ммоль/(г·с)]; в круглых скобках для катализатора Cr<sub>2</sub>O<sub>3</sub> при 415°C, в квадратных скобках – для катализатора CoMo/A1<sub>2</sub>O<sub>3</sub> при 400°C





Преобладающий механизм реакции превращения 4,6 – диметилдибензтиофена







Промотирование ГДС активности в зависимости от содержания Со на катализаторе в виде Со-Мо-S

Процессы образования анионных вакансий (• - вакансия аниона):  $Ni^{2+}S^{2-} + H_2 \rightarrow H_2S + Ni^{0+}$  $Ni^0 + 2Mo^{4+} \rightarrow Ni^{2+} + 2Mo^{3+}$ 



Предполагаемый механизм гидрообессеривания тиофена: \_\_\_\_\_ - анионная вакансия 21

### Способы синтеза катализаторов гидроочистки





Различная форма гранул катализаторов

Зависимость относительной активности от отношения объема гранулы катализатора к ее наружной поверхности (L, мм) при переработке остаточного сырья

## Сульфидирование катализаторов гидроочистки Конкурирующие реакции:

## сульфидирование $MoO_3 + H_2 + H_2S \rightarrow MoS_2 + 3H_2O$ $3NiO + H_2 + 2H_2S \rightarrow Ni_3S_2 + 3H_2O$

восстановление



Изменение степени превращения бензотиофена (БТ) ψ при 250 <sup>0</sup>C от длительности испытания τ:

1 – без обработки; 2 – восстановление 10 ч при 250 °C; 3 - восстановление 1 ч при 400 °C; 4 – то же, затем сульфидирование при 250 °C; 5 – сульфидирование при 250 °C.

### Сравнение ГДС активности АКМ катализатора при различных способах сульфидирования

| Nº | Условия и порядок активации                                                                      | Степень<br>превращения БТ,<br>стационарная, %<br>отн. |
|----|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1  | H <sub>2</sub> + H <sub>2</sub> S, 250 <sup>0</sup> C, 1 ч                                       | 75                                                    |
| 2  | H <sub>2</sub> + H <sub>2</sub> S + C <sub>12</sub> , 250 <sup>0</sup> С, 1 ч                    | 58                                                    |
| 3  | H <sub>2</sub> + C <sub>2</sub> , H <sub>2</sub> + H <sub>2</sub> S, 250 <sup>0</sup> C, 2 ч     | 50                                                    |
| 4  | H <sub>2</sub> + H <sub>2</sub> S, H <sub>2</sub> + C <sub>12</sub> , 250 <sup>0</sup> C, 2 часа | 45                                                    |
| 5  | Без обработки                                                                                    | 36                                                    |
| 6  | H <sub>2</sub> + C <sub>12</sub> , 250 <sup>0</sup> С, 1 ч                                       | 33                                                    |
| 7  | H <sub>2</sub> + C <sub>4</sub> H <sub>4</sub> S, 250 <sup>0</sup> C, 5 ч                        | 43                                                    |
| 8  | H <sub>2</sub> + C <sub>4</sub> H <sub>4</sub> S + C <sub>12</sub> , 250 <sup>0</sup> C, % ч     | 28                                                    |

24

Катализаторы риформинга

1. Реакции на металлических центрах

1.1. Реакции гидрирования-дегидрирования парафинов, нафтенов, олефинов, диенов, ароматических углеводородов.

$$\mathbf{C_2H_4} + \mathbf{H_2} \leftrightarrow \mathbf{C_2H_6}$$

Адсорбция на одном атоме металла с помощью *п*-взаимодействия



Диссоциативная адсорбция этилена на двух атомах металла с образованием о-связей



