БЕЛКОВАЯ ИНЖЕНЕРИЯ ФЕРМЕНТОВ

Природные Е, применяющиеся в биотехнологии, часто теряют активность и стабильность во время хранения или использования, тк они не соответствуют естественному окружению Е.

Белковая инженерия решает эти проблемы за счет изменения первичной структуры Е таким образом, чтобы они в изолированном состоянии и в непривычном окружении сохраняли свои свойства.

Два основных направления белковой инженерии:

- 1) рациональную инженерию
- 2) направленную эволюцию ферментов

Метод **сайт-специфического мутагенеза** - замена в исходном белке лишь одного аминокислотного остатка в строго заданном положении.

Позволяет целенаправленно изменять структуру Е → изменяются каталитические свойства и стабильность.

Необходимо знать трехмерную структуру, какие структурные, функциональные элементы Е являются критическими для изменяемого параметра, а какие — нейтральными.

в качестве исходного материала используют Е с установленной первичной и третичной стр-ми

выбирают сайт мутации (т. е. аминокислотный остаток, который подлежит замене)

синтезируют химическим путем олигодезоксирибонуклеотид длиной 12–18 осн (практически полностью соответствует небольшому участку первичной структуры исходного белка)

В процессе синтеза вместо в состав олигонуклеотида вводят другой триплет, который кодирует новый аминокислотный остаток

 \downarrow

получают гетеродуплексную плазмиду, несущую олигонуклеотид

 \downarrow

путем генноинженерных манипуляций получают клетки, в которых осуществляется биосинтез мутантного белка.

Что необходимо учитывать при создании таких белков

- Стабилизация гидрофобного ядра.
- 2) Уменьшение подвижности полипептидной цепи

3) Замена аминокислотных остатков в активном центре

Рациональная инженерия Стабилизация гидрофобного ядра

- Глобулярные белки сохраняют свою структуру благодаря взаимодействию между гидрофобными остатками.
- Внутри белковой молекулы боковые группы уложены исключительно компактно, формируя гидрофобное ядро, а свободное пространство обычно заполняется водой.
- У *термостабильных* ферментов часто **меньше** внутренних полостей по сравнению с их *мезофильными* аналогами.

Рациональная инженерия Стабилизация гидрофобного ядра

На первом этапе можно воспользоваться CAST webсервером, который позволит идентифицировать белковые карманы и полости, используя pdb файл, содержащий информацию о первичной и третичной структурах конкретного белка

На основании полученной информации можно решить, какие аминокислотные замены необходимо произвести, чтобы удалить или уменьшить объем полостей.

Эта стратегия была успешно опробована на субтилизине.

Уменьшение подвижности полипептидной цепи

В развернутом состоянии полипептид имеет больше конформационных степеней свободы, а при укладке количество степеней свободы белка уменьшается.

Мутации, снижающие степени свободы цепи, теоретически должны стабилизировать структуру.

Рациональная инженерия Уменьшение подвижности полипептидной цепи Один из алгоритмов

сравнивают трехмерные структуры термофильных и мезофильных аналогов

находят места в последовательности мезофильного

фермента, которые можно сделать более жесткими,

Главное не нарушить при этом нативную структуру и каталитическую активность белка

Уменьшение подвижности полипептидной цепи Примеры замен:

•Остатки глицина (определяющие разнообразие нативных конформаций вторичных структур), можно заменить остатками, имеющими боковые цепи (аланином, участвующим в гидрофобной стабилизации белка).

•Остатки в местах изгиба цепи можно заменить пролином, (обладает жесткой конформацией), при этом конформационная степень свободы полипептида значительно уменьшится.

Уменьшение подвижности полипептидной цепи Примеры замен:

- •Создание дисульфидных мостиков путем замены двух аминокислотных остатков на цистеины
- •Остатки должны быть на определенном расстоянии друг от друга (приблизительно 6–7 ангстрем).
- •Направление их боковых цепей должно быть таким, чтобы S-S- связь могла быть образована, не внося значительного напряжения в окружающую структуру.
- •Данный подход реализован на Т4 лизоциме (повысило его термостабильность).

Замена аминокислотных остатков в активном центре В состав моющих средств, входят ферментные добавки, например субтилизин BPN.

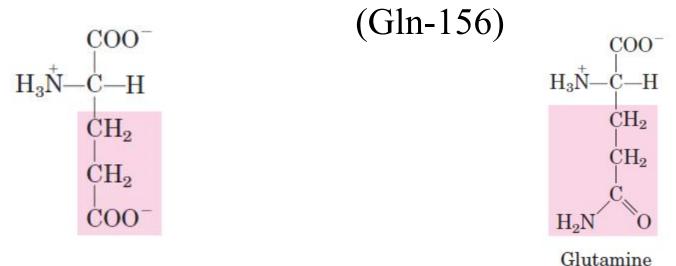
А в качестве отбеливающего агента добавляют *перборат*, который при температуре около 50 °C становится источником *пероксида водорода*.

 ${
m H_2O_2}$ окисляет метионин-222, расположенный недалеко от активного центра фермента, в сульфоксид метионина, что снижает активность субтилизина.

Решение! Замена метионина-222 неокисляемой аминокислотой повышает устойчивость субтилизина BPN к действию пероксида водорода.

Замена аминокислотных остатков в активном центре

Субтилизин расщепляет пептидные связи, в образовании которых принимают участие нейтральные аминокислоты.


Глутаминовая кислота, имеющая отрицательно заряженную боковую цепь, будет плохим субстратом для субтилизина.

Между остатком глутаминовой кислоты (Glu-156) в активном центре Е и глутаминовой кислотой, выступающей в качестве S, возникает нежелательное электростатическое взаимодействие.

Решение ↓

Замена аминокислотных остатков в активном центре

•В результате замены остатка глутаминовой кислоты (Glu-156) в активном центре субтилизина на глутамин

•Также путем введения в фермент дополнительного положительного заряда (остаток глицина (Gly-166) в активном центре фермента был заменен

лизином (Lys-166)).

COO

 CH_2

 CH_2

 CH_2

 CH_2

+NH₂

 $H_3\overset{+}{N}$ -

Знания, необходимые для рациональной инженерии белков, доступны лишь для незначительной части известных ферментов.

В отличие от рациональной инженерии, направленная эволюция ферментов не требует информации о структуре фермента, знания механизмов его инактивации или понимания молекулярных основ его стабильности.

создают библиотеку мутированных генов Е

затем гены экспрессируются в подходящем микробном хозяине

проводится скрининг или селекция продуктов экспрессии, для которых зафиксировано улучшение желаемого параметра.

гены, кодирующие ферменты с улучшенными свойствами, снова подвергают мутагенезу с целью накопления полезных мутаций.

Библиотеку мутированных генов создают с помощью

- 1) случайного мутагенеза
- 2) путем рекомбинации фрагментов гена *in vitro*.

Случайные мутации вносят, используя следующие подходы: химический мутагенез, УФ-радиацию и тд.

Если в качестве мишени для мутагенеза выбирается отдельный набор аминокислот, применяют олигонуклеотид-кассетный мутагенез. Он используется, когда аминокислоты-мишени находятся в одном и том же участке первичной последовательности.

Рекомбинация фрагментов гена in vitro (перемешивание ДНК или сексуальная ПЦР (DNA-shuffling or sexual PCR)).

- •1. ДНК, кодирующую различные варианты фермента, амплифицируют с помощью ПЦР
- •2. амплифицированную ДНК фрагментируют случайным образом с помощью ДНКазы I
- •3.пул образовавшихся фрагментов снова подвергают ПЦР, в ходе которой фрагменты выступают друг для друга праймерами
 - •4. получают семейство последовательностей ДНК, содержащих различные комбинации мутаций.

Направленная эволюция ферментов Рекомбинация фрагментов гена *in vitro Отличие от случайного мутагенеза*

- •Дает возможность одновременно улучшать сразу несколько параметров в отличие от случайного мутагенеза
- •В результате случайного мутагенеза можно получить большую популяцию самых различных вариантов Е
- •Благодаря рекомбинации полезные мутации, содержащиеся в разных генах, могут объединиться в одном. Продуктом такого гена будет фермент, обладающий наряду с высокой каталитической активностью повышенной устойчивостью.

Направленная эволюция ферментов Рекомбинация фрагментов гена *in vitro* Отличие от случайного мутагенеза

Данный методический прием позволяет быстро накапливать полезные мутации, идентифицированные в отдельных генах.

В результате рекомбинации теряются (элиминируются) нежелательные (повреждающие) мутации

Необходимых условий успешной направленной эволюции фермента является доступность быстрого и чувствительного специфического теста, позволяющего идентифицировать даже незначительные изменения в улучшении фермента.

Если фермент является критическим для выживания и роста хозяина в определенных условиях, улучшенные ферменты можно отбирать путем селекции устойчивых (выживших) клонов.

 \downarrow

Далее проводят скрининг специфических свойств фермента.

Направленная эволюция ферментов Примеры успешного применения 1) Повышение термостабильности

С помощью случайного мутагенеза было установлено, что одиночные полезные мутации обычно повышают температуру плавления фермента на 1–2 °C.

Попытки увеличить термостабильность амилазы. Путем сравнения последовательностей мезофильного и термофильного вариантов α-амилазы была обнаружена мутация, стабилизирующая фермент.

Комбинируя эту мутацию с новыми мутациями (полученными с помощью случайного мутагенеза) удалось увеличить термостабильность амилазы на 11 °C. Кроме того, время ее полужизни при 90°C выросло в девять раз.

Направленная эволюция ферментов Примеры успешного применения

- 2)повышение стабильности и активности в органических растворителях
- В результате направленной эволюции был получен субтилизин Е, активность которого в 60 %-ном диметилформамиде была существенно выше, чем активность "дикого" фермента в водной среде.

ПОЛУЧЕНИЕ ПОЛУСИНТЕТИЧЕСКИХ ФЕРМЕНТОВ ИХ ИСПОЛЬЗОВАНИЕ В КАЧЕСТВЕ ИНДУСТРИАЛЬНЫХ БИОКАТАЛИЗАТОРОВ

- Полусинтетические ферменты могут быть получены из других Е, а также из белков, изначально не обладающих ферментативной активностью.
- Используются следующие подходы:
- .Ковалентная модификация функциональных групп в активном центре путем присоединения аналогов коэнзима.
- .Удаление кофактора и использование образовавшейся полости в качестве активного центра.
- .Конформационная модификация

Ковалентная модификация функциональных групп в активном центре путем присоединения аналогов коэнзима

В данном случае эксплуатируется исходный связывающий сайт или активный центр Е.

Первоначальная каталитическая активность фермента существенно видоизменяется за счет ковалентного присоединения нового кофактора.

Папаин является протеиназой.

В активном центре папаина содержится (тиоловая, сульфгидрильная) SH-группа Cys-25, которая выступает в качестве нуклеофила и участвует в катализе гидролиза белков.

Эта группа была ковалентно модифицирована различными производными флавина. При этом образовался флавопапаин с оксидоредуктазной активностью и лишенные протеолитической.

Удаление кофактора и использование образовавшейся полости в качестве активного центра.

Активный центр полусинтетического фермента создается *de novo* путем удаления кофактора.

Мет-миоглобин из спермы кита. Гем был удален. Образовался глубокий гидрофобный карман, напоминающий активный центр фермента с двумя остатками гистидина, имеющие в своем составе имидазольные группы.

Было показано, что соединения, содержащие имидазол, способны катализировать неферментативный гидролиз некоторых соединений (п-нитрофенилацетата).

В активном центре протеаз также находятся имидазольные группы, которые участвуют в гидролизе эфиров.

Основные требования для создания полусинтетических ферментов с помощью первых двух подходов:

- 1. Белок должен быть доступен в высокоочищенной форме.
- 2. Должна быть известна трехмерная структура белка.
- 3. Белок должен иметь в активном центре или недалеко от него подходящие функциональные группы аминокислотных остатков.
- 4. Ковалентная модификация фермента должна приводить к значительному изменению активности, характерной для нативного белка.
 - 5. Присоединенный аналог кофактора не должен блокировать связывание субстратов с активным центром

Конформационная модификация

В изменении нативной конформации белка под воздействием различных физико-химических факторов и последующей фиксации индуцированных изменений путем образования внутри- и межмолекулярных сшивок.

Пример

Полусинтетические ферменты, которые могли катализировать реакцию изомеризации глюкозы в фруктозу, были получены из гексокиназы, глюкоамилазы, глюкозооксидазы, лизоцима и каталазы.

Конформационная модификация

Данный метод включает в себя несколько последовательных стадий:

- 1.Выбор исходного белка.
- 2. Изменение нативной конформации белка путем изменения температуры, рН, растворителя и т. д.
 - 3. Добавление к белку модификатора.
- 4. Образование перекрестных связей в молекуле белка с помощью бифункциональных реагентов

АБЗИМЫ

Черты структурно-функционального сходства антител и ферментов

Сходства:

- 1) белки
- 2) обладают характерной пространственной структурой
- 3) способны связывать специфические молекулы— лиганды
- 4) доступность антигенов и субстратов для молекул воды.

АБЗИМЫ

Черты структурно-функционального сходства антител и ферментов

Отличия:

- 1) активный центр антитела структурно соответствует лиганду (антигену), как «замок» с «ключу».
- HO! механизм взаимодействия антитела с лигандом может включать элементы индуцируемого соответствия и деформации лиганда
- 2) Основное предназначение антитела —прочно связать антиген, чтобы удалить его;
- роль фермента заключается в связывании субстрата с целью обеспечить его дальнейшее превращение в продукт.

АБЗИМЫ

- Типы антигенсвязывающих центров антител, напоминающие по структуре лигандсвязывающие центры ферментов:
 - а) полости, характерные для центров, связывающих низкомолекулярные лиганды (гаптены);
- б) выемки или бороздки, образующиеся в случае пептид-,
 - ДНК-, полисахаридсвязывающих центров;
- в) плоские области, формирующиеся активными центрами антител, взаимодействующими с белками.

Подходы к усовершенствованию каталитических св-в абзимов

Введение в активный центр абзимов функциональных групп, присутствующих в активных центрах соответствующих Е:

Прямые подходы (иммунологические):

- (приманить и включить) иммунизация животных гаптеном аналогом переходного состояния, несущим дополнительный заряд. Например, если заряд положительный, возможно образование антител, содержащих в участке связывания отрицательно заряженные группы.
- 2) иммунизация животных ферментом, обладающим нужной каталитической активностью.

Подходы к усовершенствованию каталитических св-в абзимов

- "Доработка" свойств абзимов:
- 1) направленная модификация антигенсвязывающего участка абзимов на уровне кодирующих их генов путем сайт-направленного мутагенеза;
- 2) селективная химическая модификация активного центра абзимов (введение функциональных групп, молекул кофакторов, ионов металлов).
- Сочетание самых разных подходов может обеспечить существенное изменение каталитических свойств абзима, приближая их по эффективности катализа к естественному Е.

Пример абзимов

- Феррохелатаза обеспечивает включение иона железа в состав протопорфирина IX и является конечным ферментом в цепи реакций биосинтеза гема.
- **N-метилпротопорфирин** ингибитор этого Е, тк предположительно имитирует структуру переходного состояния.
- **N-метилпротопорфирин** был использован в качестве гаптена для выработки каталитических антител.
- Полученные абзимы оказались эффективными катализаторами, всего лишь в 10 раз уступавшими естественному ферменту в активности.

Применение АБЗИМОВ

- Перспективность использования абзимов прежде всего связана с тем, что они могут быть выработаны для катализа почти всех химических реакций, что отличает их от других биологических катализаторов.
- Потенциальное число таких химических превращений несравненно выше, чем число реакций, имеющих место в живых системах и катализируемых соответствующими Е.

Применение АБЗИМОВ

- 1. В органическом синтезе:
- увеличение специфичности катализа;
- разделение энантиомеров;
- катализ трудно идущих химических превращений.
- 2. В медицине:
- "улучшение" иммунной системы (антитела, способные не только связывать, но и катализировать разрушение токсинов, бактерий, раковых клеток и т. д.) благодаря введению в организм либо готового абзима, либо безвредного гаптена, обеспечивающего выработку абзимов с нужной каталитической активностью.

Использование ресурсов Internet в инженерной энзимологии

См страницы 117-121

Спасибо за внимание!