NAZARBAYEV UNIVERSITY

General Chemistry I
 Atomic Structure and Properties

Dr. Ould Ely
School of Science and Technology

Chapter 3

- Picture of the Atom
- Electromagnetic radiation and Atomic Spectra
- The Nature of Electron and Atomic Orbitals
- Many-electron atoms
- Atomic properties and Periodicity
- Nuclear chemistry

Part I

3.1.1 Atomic concept, 3.1.2 Subatomic particles,
3.1.3 Atomic structure: first ideas

The classical picture of the atom

Dalton Atomic Theory

1. Elements are made of tiny particles called atoms
2. The atoms of a given elements are identical
3. Chemical compounds are formed when atoms combine with one another. A given compound has the same relative numbers and types of atoms
4. Chemical reaction involve reorganization of the atoms. The atom themselves are not changed.

J.J. Thomson's Cathode Tube

- Charge-to-mass ratio

The Atom : J. J. Thomson (1856-1940)

Experiment date 1898-1903

The Atom based on Thomson's

experiment

- A ray of particles is produced between two metallic electrodes.
- These particles are negatively charged
- Since electrons could be produced from electrodes made of various types of metals, all atoms must contain electrons
- $\mathrm{e} / \mathrm{m}=-1.76 \times 10^{8} \mathrm{C} / \mathrm{g}$
- Atoms = neutral! Positive charges are located somewhere.

Mass of electron

Mass of a single electron

http://www.voutube.com/watch?v=XMfYHag7Liw

Rutherford Experiment

Ernest Rutherford - 1911

- With Thomson Model : a particles should travel through the atom without deflection.

http://sun.menloschool.org/~dspence/chemistry/atomic/ruth_expt.html

Rutherford Experiment

The Nucleus

Ernest Rutherford - 1911

Conclusion : Dense positive center with electrons far from the nucleus

Its great density is
dramatically
demonstrated by the fact that a piece of nuclear material about the size of a pea would have a mass of 250 million tons

Modern View

$$
{ }_{11}^{23} \mathrm{Na}
$$

$$
{ }_{11}^{24} \mathrm{Na}
$$

The Mass and Charge of the Electron, Proton, and Neutron

Particle	Mass	Charge* 2
Electron	$9.11 \times 10^{-31} \mathrm{~kg}$	$1-$
Proton	$1.67 \times 10^{-27} \mathrm{~kg}$	$1+$
Neutron	$1.67 \times 10^{-27} \mathrm{~kg}$	None
*The magnitude of the charge of the electron and the		
proton is $1.60 \times 10^{-19} \mathrm{C}$.		

3.2. Electromagnetic Radiation and Quantization

- 3.2.1: Electromagnetic Radiation
- 3.2.2: Quantization
- 3.2.3: The Atomic Spectrum of Hydrogen

Spectrum

Electromagnetic radiation

X-ray

MRI

Microwave

Travel like a wave
Travel with the speed of light

Electromagnetic Radiation

Electromagnetic Radiation = a way for energy to travel. 2 oscillating fields (H and E)

ELECTROMAGNETIC RADIATION

Frequency, v

Energy
Wavelength, λ

Electromagnetic Radiation - Characteristics

$v_{2}=8$ cycles $/$ second $=8$ hertz

$\nu_{3}=16$ cycles/second $=16$ hertz
λ = wavelength $=$ distance between two peaks or two troughs in a wave. (m)
$v=$ frequency $=$ number of waves / s at a specific point of space. (s^{-1} or Hz)

$$
\lambda \infty 1 / v
$$

$$
\lambda v=c
$$

Because speed = c

$$
=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

The radiation with the shortest wavelength has the highest frequency

Radio in the 909 kHz .

What wavelength does it correspond to?

$$
\begin{aligned}
& \lambda=c / v=330 \mathrm{~m} \\
& c=2.99810^{8} \mathrm{~ms}^{-1} \\
& \mathrm{~V}=909.10^{3} \mathrm{~s}^{-1}
\end{aligned}
$$

Nature of Matter

At the end of the 19 ${ }^{\text {th }}$ century :
Matter = Energy
Matter = particles and Energy = electromagnetic radiations

Max Planck and the black body radiation:

Albert Einstein Theory :

Energy itself is quantified and radiation could be seen as a stream of particles (photons)!

$$
\begin{gathered}
E_{\text {photon }}=h v=\frac{h c}{\lambda} \\
\text { Photoelectric effect }
\end{gathered}
$$

When UV radiation hits a metal surface, electrons are ejected photoelectric effect. (in 1905 explained by Albert Einstein using a quantum approach)

$$
h \mathrm{~V}=\Phi+E_{\mathrm{KE}}
$$

Φ - work function - minimum energy required to remove the electron

When copper is bombarded with high-energy electrons, X rays are emitted. Calculate the energy (in joules) associated with the photons if the wavelength of the X rays is 0.154 nm .

$$
\begin{aligned}
& E=h \times \\
& v=h \times c /
\end{aligned}
$$

$E=6.63 \times 10^{-34}(\mathrm{~J} s \mathrm{~s}) \times 3.00 \times 10^{8}(\mathrm{~m} / \mathrm{s}) / 0.154 \times 10^{-9}(\mathrm{ff})$
$E=1.29 \times 10^{-15} \mathrm{~J}$

Dual Nature of Light

Energy - Mass relationship :

A particle but also a wave :

Summary:

$$
\begin{aligned}
E & =m c^{2} \\
m & =\frac{E}{c^{2}}
\end{aligned}
$$

- Energy is quantized
- Only discrete units of energy (quanta) could be transferred
- Dual nature of light

Light as a wave phenomenon

De Broglie 1924

λ Proportional to h / mv

$\lambda=\mathrm{h} / \mathrm{mv}$

H :Planck Constant M : masse
V : velocity

Diffraction

What is the wavelength for an electron?

$$
\begin{aligned}
& \mathrm{Me}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{Ve}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s} \\
& 1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& 6.626 \times 10^{-34} \mathrm{Js} \\
& \qquad \lambda_{e}=\frac{6.626 \times 10^{-34} \frac{\mathrm{kgm}^{2}}{\mathrm{~s}}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)}=7.3 \times 10^{-11} \mathrm{~m}
\end{aligned}
$$

The electron has a WL similar to the spacing of atoms in a crystal. Confirmed for Ni crystal.

Diffraction : result of light scattered from a regular array of points or lines.

How to test the wave properties of an electron?

How to test the wave properties of an electron?

(a) Constructive interference - waves in phase
(b) Destructive interference - waves out of phase

Waves add to give a greater amplitude.

Waves cancel out to give reduced or zero amplitude.

Diffraction

When X-rays are scattered by ordered atoms \square Diffraction pattern.

(b) Constructive interference

Waves in phase (peaks on one wave match peaks on the other wave)
(c) Destructive interference

Waves out of phase (troughs and peaks coincide)

Decreased intensity (dark spot)

Conclusion

All matter exhibits both particulate and wave properties.

Large particles: mainly particle Small particles : mainly wave Intermediate particles (electron) : both

Atomic Spectrum of Hydrogen

When a high energy discharge is passed through $\mathrm{H}_{2} \square \mathrm{H}-\mathrm{H}$ breaks \square excited H atoms.

Release of energy \square Emission spectrum.

$$
\vartheta \propto \frac{1}{4}-\frac{1}{n^{4}} \quad n=3,4,5, \ldots .
$$

Balmer Series (visible lines)
(b)
$\vartheta=R_{H}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$ Rydberg Equation

$$
n_{2}>n_{1} \quad R_{H}=3.29 .10^{15} \mathrm{~Hz}
$$

Table 3.4. The atomic spectrum of hydrogen

Series	Region of the electromagnetic spectrum	n_{1}	n_{2}
Lyman	Ultraviolet	1	$2,3,4, \ldots$
Balmer	Visible	2	$3,4,5, \ldots$
Paschen	Infrared	3	$4,5,6, \ldots$
Brackett	Infrared	4	$5,6,7, \ldots$
Pfund	Infrared	5	$6,7,8, \ldots$

Frequency, v

Atomic Spectrum of Hydrogen

Why do we have a line spectrum for H ?
Only certain energies are allowed for the electron in the hydrogen atom. Energy is quantized!

3.3.2: The Bohr Model

The Bohr Model

General Idea :

The electron in a hydrogen atom moves around the nucleus only in certain allowed circular obits.

Bohr used classical physics to calculate the radii of these orbits. At an infinite distance $\mathrm{E}=0(\mathrm{n}=\infty)$

$$
E=-2.178 \times 10^{-18} J\left(\frac{Z^{2}}{n^{2}}\right)
$$

The Bohr Model

Example : Energy emitted from $\mathrm{n}=6$ to ground state :

$$
\begin{aligned}
& E_{6}=-2.178 \times 10^{18} J\left(\frac{1^{2}}{6^{2}}\right)=-6.05 \times 10^{-20} J \\
& E_{1}=-2.178 \times 10^{18} J\left(\frac{1^{2}}{1^{2}}\right)=-2.178 \times 10^{-18} J
\end{aligned}
$$

$$
\Delta E=-2.118 \times 10^{-18} J
$$

The negative sign means that the electron is more tightly bound when $\mathrm{n}=1$ than when $\mathrm{n}=6$

$$
\begin{aligned}
& \Delta E=h \frac{c}{\lambda_{\text {emitted }}} \rightarrow \lambda_{\text {emited }}=\frac{h c}{\Delta E} \\
& =\frac{\left(6.626 \times 10^{-34} \mathrm{JS}\right)\left(3.000 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{2.18 \times 10^{-18} \mathrm{~J}}=9.379 \times 10^{-8} \mathrm{~m}
\end{aligned}
$$

Wave Function and Atomic Orbitals

3.5.1 Wave properties of matter, Heisenberg uncertainty principle
3.5.2 Wave-functions and

Schrödinger equation
3.5.3 Shapes of atomic orbitals

De Broglie

The electron bound to the nucleus is similar to a standing wave.
The waves do not travel.
Node $=$ no displacement of the wave $=$ each end.

\square Always a whole number of half-WL.

Enter

2.2 SCHRONDINGER EQUATION

Quantum Mechanical Description of the Atom

Heisenberg - de Broglie - Schrödinger
Only certain circular orbits have a circumference into which a whole number of wavelength of the standing electron will fit.

$$
\hat{H} \psi=E \psi
$$

$\psi=$ wave function : describes $\mathrm{x}, \mathrm{y}, \mathrm{z}$ of the electron
H = Hamiltonian operator
$E=$ Total Energy of the atom $\left(E_{p} e-p+E_{k} e\right)$

- probability of finding an electron at some point is proportional to $\Psi \Psi * . \Psi^{*}$ is the complex conjugate

The Schrödinger equation

The probability distributions and allowed energy levels for electrons in atoms and molecules can be calculated using the Schrödinger equation

- second order differential equation

$$
\text { HTU } \begin{aligned}
& \mathrm{H}-\text { is Hamiltonian operator } \\
& \mathrm{E}-\text { is energy of solution } \psi \\
& \psi-\text { is wavefunction }
\end{aligned}
$$

- equation has a large number of different solutions
» each corresponds to a different possible probability distribution for the electron
- probability of finding an electron at some point is proportional to $\Psi \Psi * . \Psi^{*}$ is the complex conjugate

Schrodinger Wave Equation

Wavefunction ($\boldsymbol{\Psi}$) for an electron can be calculated be Schrodinger equation:

$$
\begin{array}{cl}
-\frac{h^{2}}{8 \pi^{2} m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \boldsymbol{\psi}+E_{P E} \boldsymbol{\psi}=\boldsymbol{E} \boldsymbol{\psi} \\
\text { Kinetic energy } & \text { Potential } \\
& \text { Total } \\
\text { energy } & \text { energy }
\end{array}
$$

A partial differential shows how a function depends on one variable when several are changing

Hamiltonian for one Electron

$$
\mathrm{H}=\frac{-h^{2}}{8 \pi^{2} m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{Z e^{2}}{4 \pi \epsilon_{0} \sqrt{x^{2}+y^{2}+z^{2}}}
$$

Kinetic Energy of the Electron Motion

$h=$ planck Constant
$m=$ mass of the electron
$e=$ charge of the electron
$Z=$ charge of the nucleus
$\sqrt{x^{2}+y^{2}+z^{2}}=r=$ distance from the nucleus
$4 \pi \epsilon_{0}=$ permittivity of vacuum

Potential Energy of the Electron. The result of electrostatic attraction between the electron and the nucleus. It is commonly designated as V
$\hat{H} \psi=E \psi$

$$
\frac{\frac{-h^{2}}{8 \pi^{2} m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{Z e^{2}}{4 \pi \epsilon_{0} \sqrt{x^{2}+y^{2}+z^{2}}}}{\frac{\text { Kinetic Energy }}{\text { Potential Energy }}}
$$

$$
\left[\frac{-h^{2}}{8 \pi^{2} m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-V(x, y, z)\right] \psi(x, y, z)=E \psi(x, y, z)
$$

$$
\text { Where } \mathrm{V}=\frac{Z e^{2}}{4 \pi \epsilon_{0} r}=\frac{Z e^{2}}{4 \pi \epsilon_{0} \sqrt{x^{2}+y^{2}+z^{2}}}
$$

Cartesian and Spherical Coordinate

Cartesian coordinates

The position of the point P is defined in terms of x, y, and z

Spherical coordinates

The position of the point P is defined in terms of the distance r and the angles θ and ϕ

Quantum Numbers and Atomic Wavefunctions

\square Atomic wavefunctions are usually expressed in spherical polar coordinates - give value of Ψ at any point in space specified by r, θ and φ

The wavefunction

$$
\begin{aligned}
& \begin{array}{l}
x= \\
r \sin \theta \cos \varphi \\
y=r \sin \theta \sin \varphi
\end{array} \\
& \hline z=r \cos \theta
\end{aligned}
$$

— Can write $\Psi(r, \theta, \varphi)=R(r) Y(\theta, \varphi)$ $-R(r)$ is radial part of wavefunction $-Y(\theta, \varphi)$ is angular part of wavefunction

Homework-2

- Please solve problems;

Chapter 3
$6,9,10,12,14,16$ and 17

Due on Wednesday. Recitation time

Wave Equation for the Hydrogen Atom

$$
\Psi(x, y, z)=\Psi(r, \theta, \varphi)=R(r) Y(\theta,
$$

$\varphi)$
$-R(r)$ is radial part of wavefunction Describes electrons density at different distances from the nucleus
$-Y(\theta, \varphi)$ is angular part of wavefunction Describes the shape of the orbitals and its orientation in space.
In other words:
How the probability changes from point to point at a given distance from the center of the atom.

Quantum numbers:

Quantum numbers:

$\mathrm{n}=$ principal quantum number : size and energy of the orbital
$\mathrm{I}=$ angular momentum quantum number : 0 to $\mathrm{n}-1$: shape of the orbital $m_{1}=$ magnetic quantum number : -l to $+\mid$: orientation in space of the angular momentum

Quantum Numbers for the First Four Levels of Orbitals in the Hydrogen Atom

n	ℓ	Orbital Designation	m_{ℓ}	Number of Orbitals
1	0	$1 s$	0	1
2	0	$2 s$	0	1
	1	$2 p$	$-1,0,+1$	3
3	0	$3 s$	0	1
	1	$3 p$	$-1,0,1$	3
4	2	$3 d$	$-2,-1,0,1,2$	5
	0	$4 s$	0	1
	1	$4 p$	$-1,0,1$	3
	2	$4 d$	$-2,-1,0,1,2$	5
	3	$4 f$	$-3,-2,-1,0,1,2,3$	7

Radial and Angular Wave Function for 1s derived from Schrodinger Equation

$$
\begin{aligned}
& \Psi(r, \theta, \phi)=R(r) \times \theta \emptyset(\theta, \emptyset) \\
& {\left[\frac{4}{a_{0}^{3}}\right]^{\frac{1}{2}} e^{-\frac{r}{a_{0}} \times\left[\frac{1}{4 \pi}\right]^{\frac{1}{2}}=\left[\frac{\mathbf{1}}{\boldsymbol{\pi} \boldsymbol{a}_{\mathbf{0}}{ }^{3}}\right]^{\frac{\mathbf{1}}{2}} \boldsymbol{e}^{-\frac{r}{\boldsymbol{a}_{\mathbf{0}}}}} }
\end{aligned}
$$

(a)

(b)

$$
\mathrm{R}(\mathrm{r})=\left[\frac{1}{\pi a_{0}{ }^{3}}\right]^{\frac{1}{2}} e^{-\frac{r}{a_{0}}}
$$

$$
a_{0}=\frac{\varepsilon_{0} h^{2}}{\pi m_{e} e^{2}}=52.9 \mathrm{pm}(\text { Bohr Radius })
$$

Plot of Radial Wave Function $=f(r)$
(a)

(b)

(c)

s orbitals

Size : $1 \mathrm{~s}<2 \mathrm{~s}<3 \mathrm{~s}$. Energy: 1s<2s<3s.

Surface of 0 probability = nodal surface / node.

Number of node $=\mathrm{n}-1$ for s orbitals.

(a)
(b)

(c)

$3 s$

$3 s$

Physical Meaning of Orbitals

The wave function has no easy physical meaning.
The square of the WV at a certain point in space = probability to find an electron near that point = probability distribution.

For 1s orbital : arbitrary accepted size = radius of the sphere that encloses 90\% of total electron probability.

Kadıal Probabılıty Dıstrıbutıon : $4 \pi r^{\llcorner } K(r)^{\iota}=\dagger$

(r)

$a_{1}=52.9 \mathrm{pm}$ radius at $\mathrm{n}=1$ for hydrogen

Radial Probability Distribution : $4 \pi r^{2} R^{2}=f(r)$

$a_{1}=52.9 \mathrm{pm}$ radius at $\mathrm{n}=1$ for hydrogen

p orbitals

Two lobes separated by a node.
Sine function : + and - \square same for the orbital. $\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}$ following their orientation

(b)

d orbitals

2 different shapes: $d_{x z}, d_{y z}, d_{x y}, d_{x 2-y 2}$ and $d_{z 2}$

forbitals

Very complex shapes

Schrödinger Equation

Each solution ψ of the Schrödinger equation has a specific value for E. A specific wave function for a given electron = orbital

An orbital $=$ orbit.

How does an electron move in an orbit? We don't know!

Heisenberg uncertainty principle

There is a fundamental limitation to just how precisely we can know both the position and the momentum of a particle at a given time.

$$
\begin{aligned}
& \Delta x \Delta p \geq \frac{h}{2} \\
& h=\frac{h}{2 \pi} \rightarrow \Delta x \Delta p \geq \frac{h}{4 \pi}
\end{aligned}
$$

Negligible for macro particles (ball, etc.) but not for small particles!

The Hydrogen Atom : summary

1. The quantum mechanical model : electron = wave

Series of wave function (orbitals) that describe the possible energies and spatial distributions available to the electrons.
2. Heisenberg : the electron motion can't be defined.

The square of the WF = probability distribution of the electron in an orbital.
3. The size of the orbital is arbitrarily defined .

Surface that contains 90% of the total electron probability.
4. The H atom has many orbitals.

In the ground state : e- in 1s.

Polyelectronic Model

Schrödinger equation can be solved exactly only for hydrogen. Schrödinger equation cannot be solved exactly for polyelectronic atoms.

It has to be approximated : SCF : Self-Consistent Field by Hartree.

1- A WF (orbital) is guessed for each electron except for electron 1.
2-Schrödinger equation is solved for electron 1
3- The repulsion between 1 and the others electrons are computed
4- ψ_{1} is found
5- ψ_{2}, etc. are computed
6 - The entire process start again until a self-consistent field is obtained

Self-Consistent Field Method

Review this link at home
https://www.youtube.com/watch?v=A6DiVspoZ1E

Many Electron Atoms

Part V

Electron spin, Aufbau principle,
Anomalies in electronic configuration, Structure of Periodic table

Electron Spin and Pauli Principle

A $4^{\text {th }}$ quantum number describe the electron : m_{s} : electron spin quantum number.

The electron doesn't really "spin" = name for the intrinsic angular moment.
$m_{s}=+1 / 2$ or $-1 / 2$
Pauli exclusion principle: in a given atom no two electrons can have the same set of four quantum numbers.

- An orbital can hold only two electrons and they must have opposite spin.

History of the Periodic Table

Dmitri Mendeleev : ми́трий Менделе́ев

One of first to arrange known elements into a chart

Allowed prediction of element properties

Arranged known elements according to increasing atomic masses

Mendeleev first stated the periodic law "The properties of the elements are a periodic function of their atomic masses"

1834-1907
Saint Petersburg - Russia

Later, after more observations, the table was correctly arranged in ORDER OF INCREASING ATOMIC NUMBER

The Aufbau Principle

Principle to populate orbitals.

Valence electrons

Valence electrons = electrons from the outermost principal quantum level of an atom.

Group : Elements in a column : Same valence configuration

$\begin{gathered} \mathrm{H} \\ 1 s^{1} \end{gathered}$							$\begin{aligned} & \mathrm{He} \\ & 1 s^{2} \end{aligned}$
Li $2 s^{1}$	$\begin{aligned} & \mathrm{Be} \\ & 2 s^{2} \end{aligned}$	$\begin{gathered} \text { B } \\ 2 p^{1} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 2 p^{2} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 2 p^{3} \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 2 p^{4} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 2 p^{5} \end{gathered}$	Ne $2 p^{6}$
$\begin{aligned} & \mathrm{Na} \\ & 3 s^{1} \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ 3 s^{2} \end{gathered}$	Al $3 p^{1}$	$\begin{gathered} \mathrm{Si} \\ 3 p^{2} \end{gathered}$	P $3 p^{3}$	S $3 p^{4}$	$\begin{gathered} \mathrm{Cl} \\ 3 p^{5} \end{gathered}$	Ar $3 p^{6}$

Rules

Rules

After $4 s^{2}$, we fill $3 d$.
$\mathrm{Mn}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}-\mathrm{Fe}[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 d^{6}$

Additional Rules:

- The ($\mathrm{n}+1$) orbitals always fill before the nd orbitals.
- After lanthanum, the lanthanide series occur. \square filling of 4 f instead of 5 d
- After actinium, the actinide series occur. \square filling $5 f$ instead of $6 d$
- Groups 1A $\square 8 \mathrm{~A}$ indicate the total number of valance electrons.
- Grouns 1A $\sqcap 8 \mathrm{~A}$ are main groun elements.

Rules

Element above 118 are generally unstable

G contain 9 orbitals $\mathrm{I}=\mathrm{n}-1=4$ so $-4,-3,-2,-1,0,2,3,4$ each

Rules

f-Transition Elements
*Lanthanides

$\begin{gathered} 58 \\ \mathrm{Ce} \\ 6 \cdot s^{2} 4 f f^{\prime} 5 d 1 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 6 \mathrm{~s}^{2} 4 f^{3} 5 d^{0} \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 65^{2} 4 \mathrm{f}^{5} 5 \mathrm{~d}^{0} \end{gathered}$	$\begin{gathered} 61 \\ \mathrm{Pm} \\ 65^{2} 4 \cdot 55 d^{0} \end{gathered}$		$\left\|\begin{array}{c} 63 \\ \mathrm{Eu} \\ 6 s^{2} 4 f^{75} 5 d^{\circ} \end{array}\right\|$			$\left.\begin{gathered} 66 \\ \text { Dy } \\ 66^{2} 24 f^{105 d^{0}} \end{gathered} \right\rvert\,$		$\begin{gathered} 68 \\ \mathrm{Er} \\ 6 \mathrm{~s}^{2} 4 \mathrm{ff}^{25 c_{0}} \end{gathered}$			$\begin{gathered} 71 \\ \mathrm{Lu} \\ 6.5^{2} 4 f^{145} d^{1} \end{gathered}$
$\begin{gathered} 90 \\ \text { Th } \\ 72_{2} 25^{0} 6 d^{2} \end{gathered}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 7 s^{255} f^{2} 6 d^{1} \end{gathered}$	$\begin{gathered} 92 \\ \mathrm{U} \\ 7 s^{25 f^{3} 6 d^{1}} \end{gathered}$		$\begin{gathered} 94 \\ \mathrm{Pu} \\ 7 s_{25 f} 56 d^{0} \end{gathered}$	$\begin{gathered} 95 \\ \mathrm{Am} \\ 7 s^{255 f^{\prime}} \mathbf{6 d ^ { 0 }} \end{gathered}$	$\begin{gathered} 96 \\ \mathrm{Cm} \\ 7 s^{25} 5^{7} 6 d 1 \end{gathered}$		98 Cf $75^{255 f^{10} 0^{\circ}}$	$\begin{gathered} 99 \\ \text { Es } \\ 7 s_{2}^{25 f 16600} \end{gathered}$	$\begin{gathered} 100 \\ \mathrm{Fm} \\ 7 s_{25 f^{12660}} \end{gathered}$	$\left.\begin{gathered} 101 \\ \mathrm{Md} \\ 7 \mathrm{~T}_{2}^{25 f^{136} 6 d^{0}} \end{gathered} \right\rvert\,$	$\begin{array}{\|c\|} 102 \\ \text { No } \\ 7 s 25 \cdot f^{146} \alpha^{0} \end{array}$	103 Lr $7 s^{25} 5 f^{14} 6 d^{1}$

Hund's Rule

The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by the Pauli Principle.

Configuration of Ne ? $1 s^{2} 2 s^{2} 2 p^{6}$ Configuration of Na ? $[\mathrm{Ne}] 3 \mathrm{~s}^{1}$

Pauli Exclusion Principle

Pauli Exclusion principle ; no two electrons in an atom can have the same quantum numbers $n, I, m l$, and $m s$ - this means that an orbital can never have more than two electrons in it

Hund's Rule

Hund's rule of maximum multiplicity requires that electrons be placed in orbitals to give the maximum total spin possible (the maximum number of parallel spin)

Penetration Effect

Why do we fill s, p and then d ?.

Core electrons : $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p are shielding $3 \mathrm{~s}, 3 \mathrm{p}, 3 \mathrm{~d}$ from the nuclear charge.

Even if 3 s has a max around 200pm, it has a small/significant prob. of being quite close to the nucleus \square Penetration effect.
$3 p$ has less chance to be near the nucleus

3d shows much less penetration than 3 p. $\mathrm{E}_{3 \mathrm{c}}<\mathrm{E}_{3 \mathrm{n}}<\mathrm{E}_{3 \mathrm{~d}}$

Penetration Effect

The penetration effect also explains why 4s is filled before 3d.

Potassium : $1 S^{2} 2 S^{2} 2 P^{6} 3 S^{2} 3 P^{6} 4 S^{1}$ rather than $1 S^{2} 2 S^{2} 2 P^{6} 3 S^{2} 3 P^{6} 3 d^{1}$
An electron in a 4S penetrate much more than an electron in a 3d orbital, as shown Graphically. (qualitative explanation)

Slater rules provide an approximate
Guide explain why certain orbitals
fill before others.

Electrons outside

 have no effect for electron of interest
Positively charged nucleus

Electron of interest

Electrons in between cancel some of the nuclear charge

Slater's Rules

The rules were devised semi-empirically by John C. Slater and published in 1930

- Identify $Z_{\text {eff }}$ (as a measure of attraction) for any electron

$$
\begin{gathered}
Z^{*}=\mathrm{Z}-\mathrm{S} \\
\text { Where } \mathrm{Z} \text { = nuclear charge } \\
\mathrm{S}=\text { shielding constant }
\end{gathered}
$$

Rule-1. The atoms electronic structure is written in order of increasing quantum numbers n and l grouped as follows:

$$
\text { (1s) }(2 s, 2 p)(3 s, 3 p)(3 d)(4 s, 4 p)(4 d)(4 f)(5 s, 5 p)(5 d) \text { etc. }
$$

Rule-2. Each group to the right do not shield electrons to their left.

Slater's Rules

The rules were devised semi-empirically by John C. Slater and published in 1930

- Rules for determining S

S = shielding constant

Rule-1. The atoms electronic structure is written in order of increasing quantum numbers n and I grouped as follows:

$$
\text { (1s) }(2 s, 2 p)(3 s, 3 p)(3 d)(4 s, 4 p)(4 d)(4 f)(5 s, 5 p)(5 d) \text { etc. }
$$

Rule-2. Each group to the right do not shield electrons to their left.

Slater's Rules for determining S for a specific electron

The shielding constant (S) $\boldsymbol{n s}$ and $\boldsymbol{n} \boldsymbol{p}$ valence electrons:

3a) Each electron in the same (ns, np) group contributes 0.35 to the value of S for each other electron in the group. Except. A 1s electron contributes 0.30 to S of another 1s electron.

EXAMPLE: $2 s^{2} p^{5}$, in a particular $2 p$ electron has 6 other electron in ($2 s, 2 p$) group. Each of these contribute 0.35 to the value of S, for a total contribution to S of $6 \times 0.35=2.10$

Slater's Rules for determining S for a specific electron

Rule -3b: Each electron in $n-1$ group contribute 0.85 to S

Rule -3c: Each electron in n-2 group or lower shells contribute 1.00 to S

EXAMPLE: $3 s$ electrons of sodium $\left(1 s^{2} 2 s^{2} p^{6} 3 s^{1}\right)$, there are 8 electrons in $n-1(2 s, 2 p)$ group, each of these contribute 0.85 to the value of S , for a total contribution to S of $8 \times 0.85=6.80$. There are two electrons in $n-2(1 S) 2 \times 1=2, S=8.80$

Z* for $\mathrm{Na}=\mathrm{Z}-\mathrm{S}=11-8.8$
 $=2.2$

Slater's Rules for determining S for a specific electron

a) Rule -4a: Each electron in nd and nf valence

Each electron in the same group (nd) or (nf) group contribute 0.35 to the value of S to each other electron in the group (same rule as 3 a)
a) Rule -4b:

Each electron in groups to the left contribute 1 to the value of S.

Nickel

Use slater rules to calculate the shielding constant S and effective nuclear charge of 3d and 4s electrons. Compare

Explain why the most common oxidation state of Ni have [Ar]3d ${ }^{8}$

Solution

- Rule-1 : the electron configuration is written using slater's groupings:
$\left(1 s^{2}\right)\left(2 s^{2}, 2 p^{6}\right)\left(3 s^{2}, 3 p^{6}\right)\left(3 d^{8}\right)\left(4 s^{2}\right)$
To calculate S for 3 d valence electron:
Rule 4a : each electron in the group $\left(3 d^{8}\right)$ contributes 0.35 to S . Total contribution = $7 \times 0.35=2.45$

Rule 4b : each electron in the group to the left of $\left(3 d^{8}\right)$ Contribute 1 to S. Total contribution $=$ $18 \times 1=18.00$
Total S = $2.45+18.00=20.45$
The effective nuclear charge $Z^{*}=\mathbf{2 8}-20.45=7.55$

Solution

- Rule-1 : the electron configuration is written using slater's groupings:
$\left(1 s^{2}\right)\left(2 s^{2}, 2 p^{6}\right)\left(3 s^{2}, 3 p^{6}\right)\left(3 d^{8}\right)\left(4 s^{2}\right)$
To calculate S for $4 s$ valence electron:
Rule 3a : each electron in the 4 s group contribute
0.35 1×0.35
Rule 3b : each electron in the n-1 group
contribute 0.85 (0.85 .16) $=13.60$
Rule 3c : each electron on the left of $n-1$
Contribute 1 to S. Total contribution $=10 \times 1=10.00$
Total S $=0.35+13.60+10.00=23.95$

The effective nuclear charge $Z^{*}=28-23.95=4.05$

Comparison of The effective nuclear charge

- 3d electrons

The effective nuclear charge
Z*=28-20.45=7.55

- 4s electrons
$Z^{*}=28-23.95=4.05$
$\mathrm{Ni}:[\mathrm{Ar}] 3 \mathrm{~d}^{8}$
- All transition Metals loose ns electrons more readily than ($n-1$) d electrons

Periodic Properties of Atoms : Ionization Energy

Ionization Energy: Energy required to remove an electron from a gaseous atom or ion. IE in kJ or $\mathrm{eV}\left(1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}\right)$

$$
\mathrm{X}_{(g)} \square \mathrm{X}^{+}{ }_{(g)}+\mathrm{e}^{-}
$$

Koopmans' theorem: IE of an electron = energy of the orbital from which it came. (Approx because it doesn't take into account a reorganization)

$$
\begin{array}{cl}
\mathrm{Al}_{(g)} \square \mathrm{Al}^{+}{ }_{(g)}+\mathrm{e}^{-} & \mathrm{I}_{1}=580 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Al}^{+}{ }^{(g)} \square \mathrm{Al}^{2+}{ }^{(g)}+\mathrm{e}^{-} & \mathrm{I}_{2}=1815 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Al}^{(++}{ }_{(g)} \square \mathrm{Al}^{3+}(g)+\mathrm{e}^{-} & \mathrm{I}_{3}=2740 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Al}^{3+}{ }_{(g)} \square \mathrm{Al}^{4^{+}}{ }_{(g)}+\mathrm{e}^{-} & \mathrm{I}_{4}=11600 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

$[\mathrm{Ne}] 3 s^{2} 3 p^{1}$: First e^{-}come from $3 p$, second from $3 s$
$\mathrm{I}_{1}<\mathrm{I}_{2}<\mathrm{I}_{3} \square$ Why? Positive charge increases \square Electron more and more tightly bound.
I_{4} is very high : $\mathrm{Al}^{3+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$: core electrons are bound very tight!

Trend in Atomic Properties : Ionization Energy

Table 12.6
Successive Ionization Energies in Kilojoules per Mole for the Elements in Period 3

"Note the large jump in ionization energy in going from removal of valence electrons to removal
of core electrons.
The first ionization
energy increases
across a period and
decreases down a
group

Trend in Atomic Properties : Ionization Energy

Trend in Atomic Properties : Ionization Energy

Table 12.7
First Ionization Energies for the Alkali Metals and Noble Gases

Atom	$I_{1}(\mathrm{~kJ} / \mathrm{mol})$
Group 1A	
Li	520.
Na	495
K	419
Rb	409
Cs	382
Group 8A	
He	2377
Ne	2088
Ar	1527
Kr	1356
Xe	1176
Rn	1042

IE goes down along a group.

The removed electron is away from the core

Trend in Atomic Properties : Atomic Radius

Atomic Radius: half the distance between the nuclei in a molecule consisting of identical atoms.

END

Alkali Metals - 1A

Table 12.9

Properties of Five Alkali Metals

	Valence Electron Element Configuration	Density at $25^{\circ} \mathrm{C}$ $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	mp $\left({ }^{\circ} \mathrm{C}\right)$	bp $\left({ }^{\circ} \mathrm{C}\right)$	First Ionization Energy $(\mathrm{kJJ} / \mathrm{mol})$	Atomic (covalent) Radius (pm)	Ionic $\left(\mathrm{M}^{+}\right)$ Radius (pm)
Li	$2 s^{1}$	0.53	180	1330	520	152	60
Na	$3 s^{1}$	0.97	98	892	495	186	95
K	$4 s^{1}$	0.86	64	760	419	227	133
Rb	$5 s^{1}$	1.53	39	688	409	247	148
Cs	$6 s^{1}$	1.87	29	690	382	265	169

Low melting point

 Lose easily an electron Strong reducer$$
\mathrm{Li}>\mathrm{K}>\mathrm{Na}
$$

Abnormal: Order is due to the hydration energies.

Na and K react more violently with water than Li due to its high melting point.

Table 12.10
Hydration Energies for $\mathrm{Li}^{+}, \mathrm{Na}^{+}$, and K^{+}Ions

Ion	Hydration Energy $(\mathrm{kJ} / \mathrm{mol})$
Li^{+}	-500
Na^{+}	-400
$\mathrm{~K}^{+}$	-300

$$
\Delta \varphi=\frac{\text { Arc Length }}{\begin{array}{l}
\text { radius of the } \\
\text { circle }
\end{array}}
$$

$$
\text { Angle }=\frac{\text { Arc Length }}{\begin{array}{l}
\text { radius of } \\
\text { the circle }
\end{array}}
$$

Trend in Atomic Properties : Ionization Energy
 Period Period Period

23
4
Period
5
Period
6

2p

2s
\square
$\uparrow \downarrow$

Nitrogen

Oxygen has lower ionization energy than nitrogen

