Экологическая эмбриология (спецкурс для магистров кафедры эмбриологии МГУ)

О.П. Мелехова, д.б.н., вед.н.с., +79153501293; muffs2013@gmail.com Лекция 7.

Чувствительность эмбриональных зачатков. Эндогенные и экзогенные причины нарушения развития.

Структура лекции

- 1. Дифференциальная чувствительность эмбриональных клеток к повреждающим факторам и ее биохимический фон;
- 2. Чувствительность и реактивность. Соотношение скоростей повреждения и репарации;
- 3. Механизмы чувствительности эмбриональной клетки;
- 4. Окислительный стресс универсальный ответ клетки на повреждающее воздействие;
- 5. СР-реакции как параметр редокс-гомеостаза клетки и фактор прогноза исхода стресса;
- 6. Фазный характер зависимости биологического эффекта от дозы воздействия.

Высокий уровень СР-реакций в норме в эмбриональных зачатках на ранних стадиях развития соответствует суммарной активизации процессов ферментативного и неферментативного окисления в плазматических, митохондриальных, ядерных и микросомальных мембранах клеток в состоянии компетенции.

Это – естественный эпигенетический процесс, инициирующий экспрессию генов, необходимый для дифференцировки.

Состояние конституционального «окислительного стресса» определяет повышенную чувствительность к повреждающим внешним воздействиям.

В нормальном развитии эти «критические» стадии инициации дифференцировки проходят быстро, но если уровень СР дополнительно повышается в результате внешнего воздействия, нарушается и последующий энергозависимый процесс — морфогенез или дифференцировка.

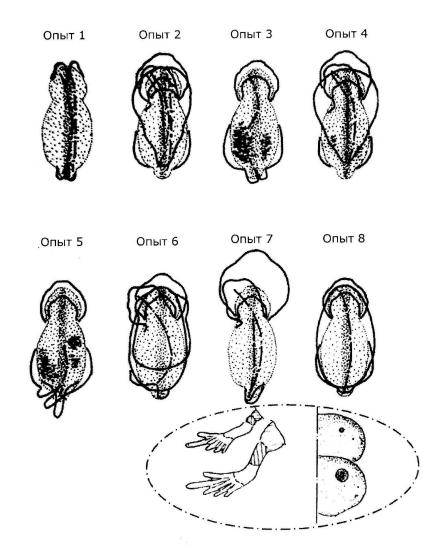


Рис. 36. Аномалии развития эмбрионов травяной лягушки, связанные с нарушениями развития осевого зачатка. В рамке слева — аномалии развития задней конечнсти; справа — микрофтальмия.

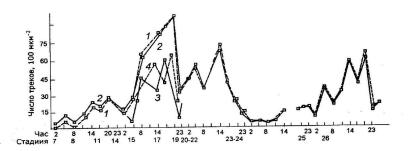
Определение эмбриотоксичности различных химических соединений по метаболическому критерию (объект – гаструлы шпорцевой лягушки). Таблица 13.

Испыты-	гы- Концентрация		Удельная		Заключение	Ги-	
ваемое	мг/л доли от		радиоак-		по экс-	бель/уродство, %	
вещество		ПДК	тивность,	$K - O^{**}, \%$	прессному	(суммарно за 2	
			имп./мин	К	био-	сут)	
			шт		тестирова-		
7.7.44					нию		
Вода	-	-	141	-	Нетоксично		
Медный	0,04	10 ПДК	234	66	Токсично	Гибель 100%	
купорос	0,004	пдк	201	43	_"-	Гибель 60%	
	0,0004	0,1ПДК	176	25	Низкая ток-	Гибель 20%	
					сичность		
Янтарная	0,1	10 ПДК	228	61	Токсично	_	
кислота	0,01	пдк	180	28	Нетоксично	-	
Соляровое	0,01	пдк	702	398	Токсично	Гибель 40%,	
масло						уродств 20%	
	0,001	0,1ПДК	1651	1070	_"	Гибель 20%	
Хлори-	1,5	10 ПДК	325	130	_"_	Гибель 100%	
стый ли-	0,15	ПДК	238	69	_"_	То же	
тий	0,015	0,1ПДК	296	110	_"_	Гибель 50%, за-	
						мед-ленное и	
						аномаль-ное раз-	
						витие 50%	
ддт	следы	(K ₁)***	5354	3700	_"_	Гибель 100%	
	0,1	K ₁	396	180	_"_	То же	
Атразин	0,005	пдк	269	91	_"_	"_	
	0,0005	0,1ПДК	266	89	"_	_"_	

[•] Значения ПДК, принятые для рыбоводных водоемов.

"Удельная радиоактивность — $\frac{onsm - контроль}{контроль}$ %

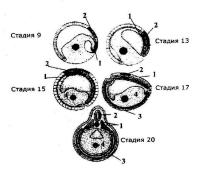
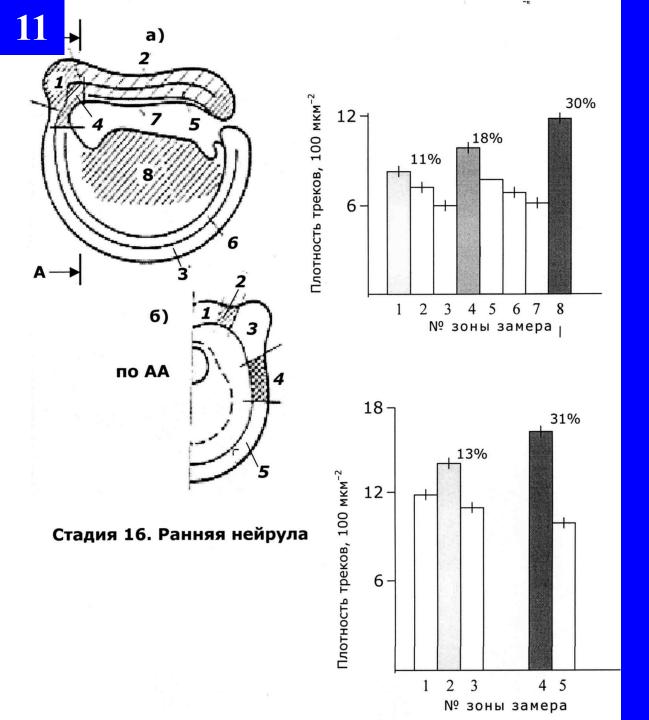
"К₁ — концентрация условная

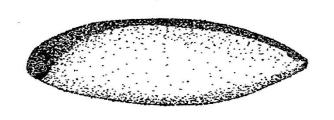

Классификация свободных радикалов

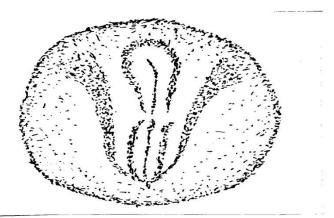
На рис. приведена классификация свободных радикалов, согласно которой все радикалы, образующиеся в организме человека, можно разделить на **природные** и **чужеродные** [1].

Название	Символ	Содержание в клетке (в норме), моль/л	Полупериод жизни в секундах при 37 °C	Свойства	Относи- тельная актив- ность *)
		Молек	улярный кисло	род	
кислород в основном, триплетном состоянии	$^3\sum_g {\rm O}_2$	[10 ⁻⁶]	> 10 ²	способен к диффузии через биомембраны	слабый окисли- тель
		Активные ф	оормы кислород	ца (АФК)	
супероксидный анион— радикал кислорода	O_2^{-}	[10-11]	10 ⁻⁶	сигнально-пусковые функции в цитоплазме; через биомембраны не проникает	0
гидроперокси-радикал (пергидроксид)	HO ₂	[10-11]	10 ⁻⁸	способен к диффузии и оксидазной модификации	1
синглетный кислород	¹ O ₂	[10 ⁻¹¹]	10-6	способен к диффузии и выраженной оксидазной модификации	10
пероксид водорода	H ₂ O ₂	[10 ⁻⁸]	10-10 ²	сигнально-пусковые функции; диффундирует на большие расстояния	> 1
гидроксид-радикал	ОН	< [10 ⁻¹¹]	10 ⁻⁹	диффундирует на короткие расстояния; очень высокая оксидазная модификация	10 ⁷
моноксид азота- радикал	NO.	[10 ⁻⁶]	0,1-6,4	Сигнально-пусковые функции; диффундирует на большие расстояния	не измерен
пероксинитрит	ONO ₂	< [10 ⁻⁶]	1-2	диффундирует на большие расстояния; высокая оксидазная модификации	10^2
	Прод	цукты перекисн	ого окисления	липидов (ППОЛ)	
алкоксил-радикал	ro.	[10 ⁻⁶]	10-6	инициирование цепной реакции ПОЛ	10 ⁴
пероксил-радикал LO		[10 ⁻⁶]	10-2	инициирование цепной реакции ПОЛ	1
молекулярные LOOH, продукты ПОЛ R—LO		[10 ⁻⁶]	10-2-1	высокая способность к диффузни и оксидазной модификации	10 ²

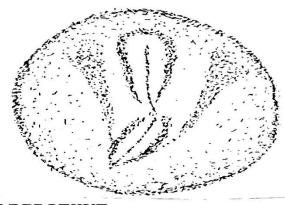
^{*)}По А. А. Болдыреву (2001) и данным : Ю.Б. Кудрящова (2004)

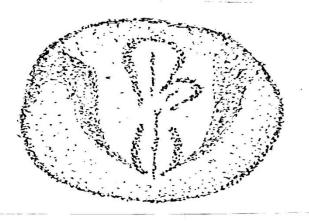



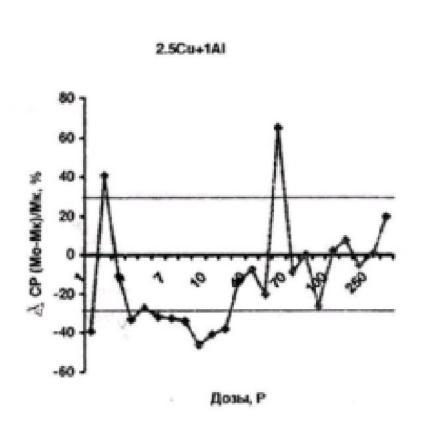

Рис. 18. Суточная динамика (изменение числа треков) СР процессов в эмбриогенезе травяной лягушки на разных стадиях развития зародышей (по Кабару и Маро): 1 – в хордомезодерме, 2 – в развивающейся нервной системе, 3 – в туловищной эктодерме, 4 – в энтодерме. По оси абсиисс: верхняя строка – время суток, нижняя строка – стадии развития развития. На схемах срезов зачернены области 1, 2, 3 и 4, в которых подечитаны треки.

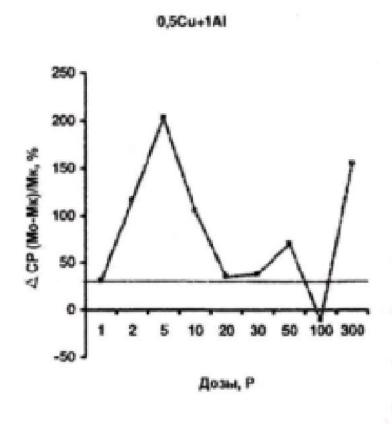

Региональность СР реакций у зародышей травяной лягушки на стадии ранней нейрулы: а) сагитальный срез; б) поперечный срез (данные авторадиографии). См. пояснения на Сл. 7.

ТИПИЧНЫЕ АНОМАЛИИ РАЗВИТИЯ АМФИВИЙ, ВЫЗВАННЫЕ ТОКСИЧНОЙ СРЕДОЙ, ПРИВОДЯЩИЕ К ЭМЕРОНАЛЬНОЙ ГИБЕЛИ.


НАРУШЕНИЕ морфогенеза


ИСКРИВЛЕНИЕ нервной трубки


ИЗГИБ нервной трубки



РАЗДВОЕНИЕ нервной трубки

13. Уровень СР реакций при действии рентгеновского облучения в разных дозах на эмбрионы шпорцевой лягушки

МЕХАНИЗМЫ ЧУВСТВИТЕЛЬНОСТИ ЭМБРИОНАЛЬНЫХ КЛЕТОК К ПОВРЕЖДАЮЩИМ ФАКТОРАМ

Методический подход: чувствительность эмбриональных зачатков оценивали экспрессно по изменению уровня СР реакций методом привитой сополимеризации, а в более поздние сроки — по клеточной гибели, нарушению морфогенеза и дифференцировки, скорости развития и изменениям в жизнеспособности эмбрионов.

Авторская технология экспрессной детекции биологического эффекта малых доз химических и электромагнитных воздействий: на основе измерения адаптационного окислительного стресса эмбриональных тест-объектов в чувствительной (критической) фазе развития.

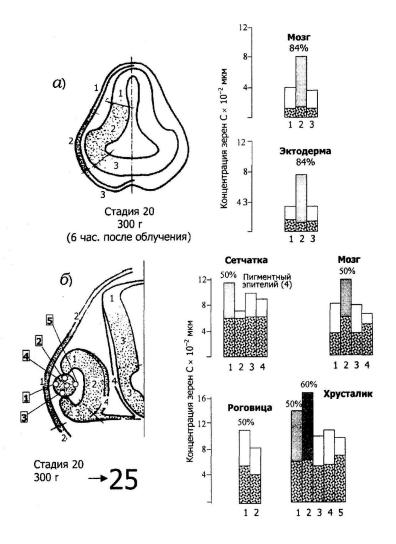


Рис. 19. а) Распределение относительных концентраций СР в глазном зачатке через 6 часов после рентгеновского облучения (300 рентген) на стадии 20; б) концентрация СР и морфология лучевого поражения глаза на 3 сутки (стадия 25) после рентгеновского облучения на стадии 20. Цифры под гистограммами указывают № участка (на схеме среза), где определена концентрация СР. (См. также пояснения в тексте.)

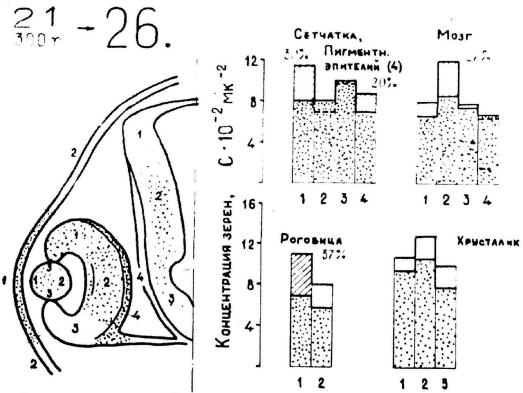


Рис. . Распределение СР и морфологического поражения в глазу на 3 сутки после РО на ст.21 /300 р/.

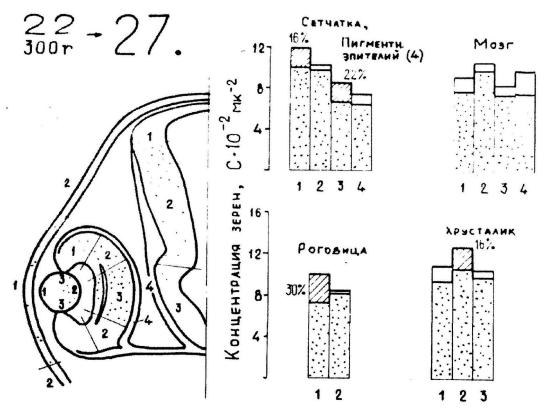


Рис. : Распределение СР и морфологического поражения в глазу на В сутки после РО на ст.22 /300 р/.

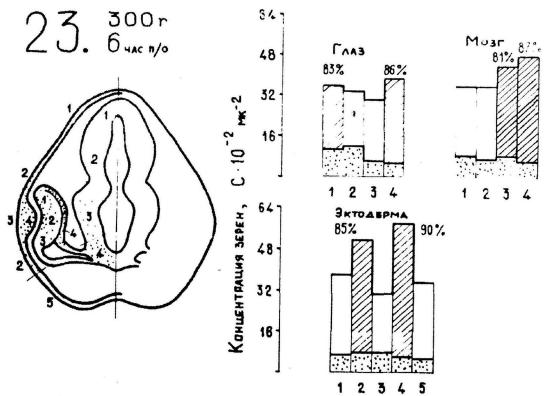


Рис. . Распределение относительных концентраций СР в глазном зачатке через 6 часов после РО /300 р/ на ст.23.

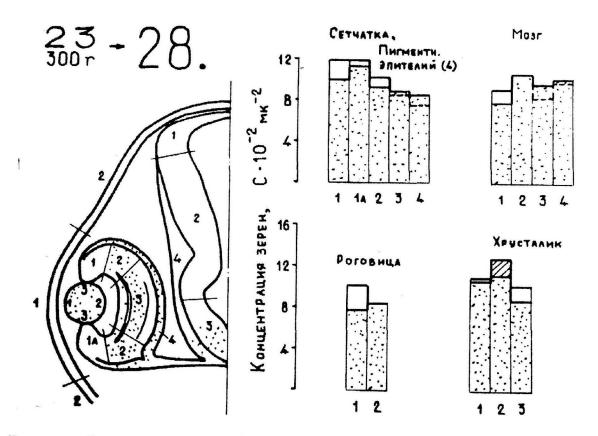


Рис. . Распределение СР и морфологического поражения $\rm B$ глазу на $\rm B$ сутки после $\rm PO$ на $\rm ct.23$ /300 p/.

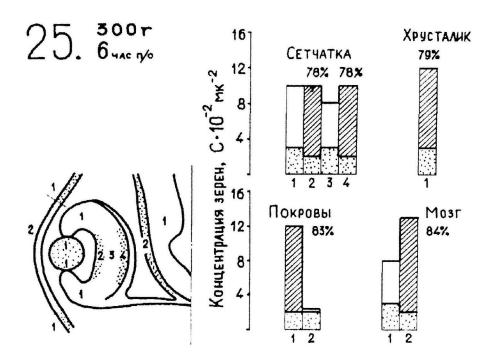


Рис. . Распределение относительных концентраций СР в глазном зачатке через 6 часов после РО на ст.24-25 /300 р/.

Заключение.

Реакции эмбриональных объектов на малые дозы электромагнитного излучения развиваются по мембранному механизму:

<u>1. Первичный ответ:</u> развитие цепных СР-реакций, перекисное окисление липидов (ПОЛ), образование токсичных продуктов.

Заключение

2. Характерный клеточный ответ: нарушение восприятия информационных межклеточных сигналов, инициирующих экспрессию генов, цитодифференцировку и морфогенез. Клеточные популяции в течение долгого срока сохраняют метаболические аномалии.

Заключение.

- 3. Отсроченный эффект: тератогенез (характерные стадиеспецифичные уродства) и гибель эмбрионов.
- 4. Экологические последствия:
- Рост показателей изменчивости в популяциях, повышенная чувствительность к изменениям факторов среды;
- Снижение численности популяций;
- Нарушение экологического равновесия.