
Галогеналкены. Галогенарены.

Реакционная способность галогенов со связью C_{sp}^{-2} -Hal

$$\delta = 0$$
 $\delta + 0$ $\delta = 0$ $\delta =$

Активность в реакциях S_N Ar возрастает

$$\begin{bmatrix} \mathsf{CH}_2 = \mathsf{CH} & - \dot{\mathsf{CI}} & \longleftarrow & \dot{\mathsf{CH}}_2 - \mathsf{CH} = \mathsf{CI} \end{bmatrix}$$

Галогеналкены

$$H_2C=CH-CI$$
 хлорэтен, хлорвинил

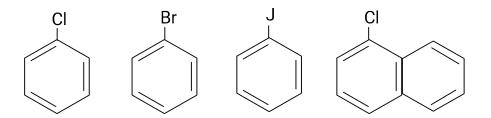
Методы синтеза галогеналкенов


Дегидрогалогенирование вицинальных дигалогеналканов

Присоединение галогенводородов к алкинам

$$H_3C-C\equiv C-CH_3+HCI \xrightarrow{HgCl_2} H_3C-C=C-CH_3$$

Химические свойства


Реакции Ad_{E}

Полимеризация

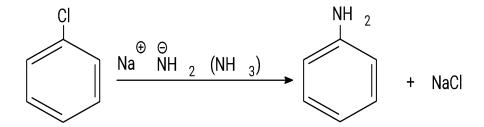
хлоропреновый каучук

ГАЛОГЕНАРЕНЫ

Методы синтеза галогенаренов

Хлорирование и бромирование аренов. Реакции S_FAr

Галогенирующие реагенты: Cl_2 , Br_2

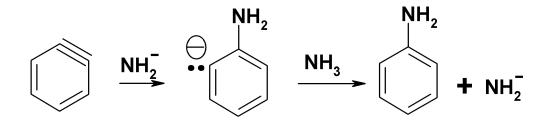

Катализаторы: кислоты

Льюиса ($AICI_3$, $FeCI_3$)

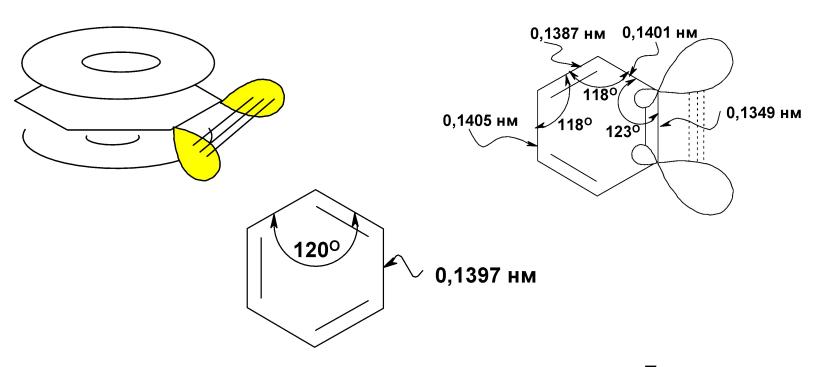
Получение фтор-, иодбензола через соли диазония

Химические свойства

Нуклеофильное замещение, протекающее через стадию образования дегидробензола. Отщепление – присоединение. Ариновый механизм.



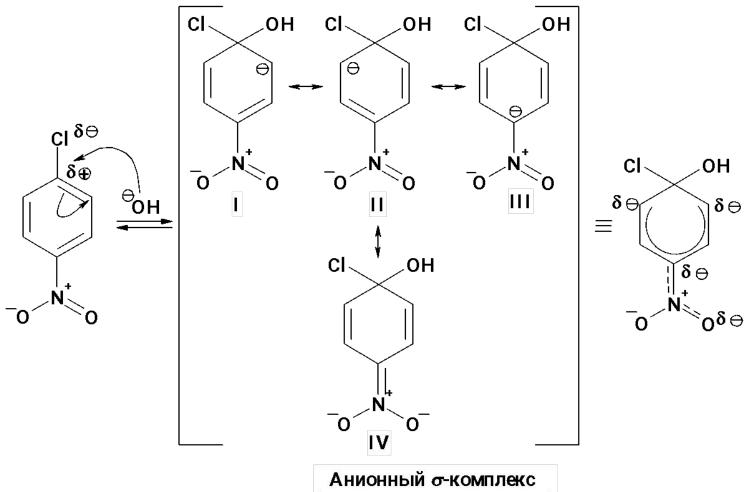
Механизм реакции


Первая стадия - отщепление хлороводорода с образованием дегидробензола.

$$H \xrightarrow{CI} \xrightarrow{NH_2} \xrightarrow{Q} \xrightarrow{NH_3} \xrightarrow{CI} \xrightarrow{-CI}$$
 Дегидробензол

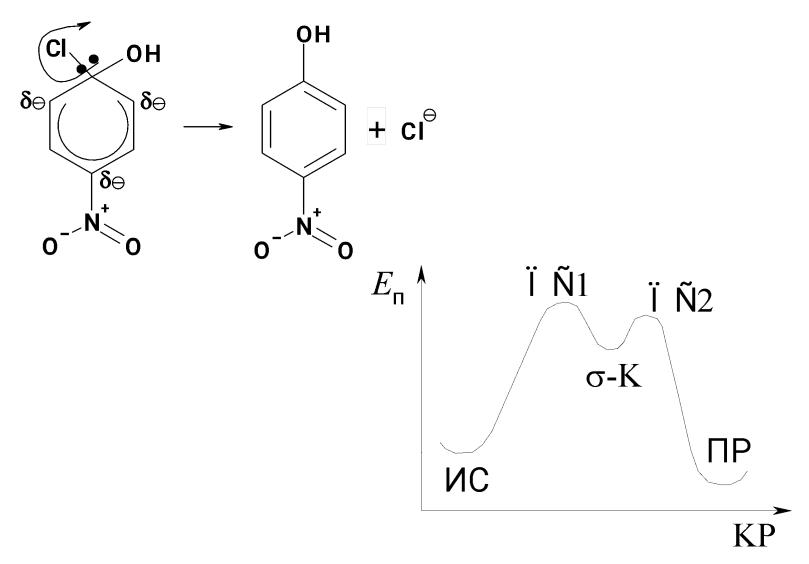
Вторая стадия - присоединение аммиака к дегидробензолу.

Строение дегидробензола



11-оксатрицикло[6.2.1.0^{2,7}] ундеак-2,4,6,9-тетраен

Бимолекулярное нуклеофильное замещение путем присоединения - отщепления $S_N 2Ar$


$Mexahuзм S_N 2Ar$

Первая стадия (присоединение) – медленная

(комплекс Мейзенгеймера)

Вторая стадия (отщепление) - быстрая

Энергетическая диаграмма реакции S_N 2Ar 11

Реакционная способность галогенов.

$$\begin{array}{c|c} F & N(CH_3)_2 \\ \hline + (CH_3)_2 NH & \hline S_NAT & + HF \\ \hline H_3C & C & O \end{array}$$

F(312) >> CI(1) > Br(0.74) > I(0.36)

	Длина связи, нм	Прочность связи, кДж/моль
F	0,1381	435
CI	0,1767	293
Br	0,1940	238
I	0,2140	180

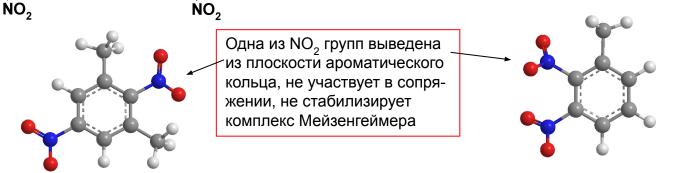
4-Фторацетофенон

4-Диметиламиноацетофенон

$$O_2$$
 O_2 O_3 O_4 O_4 O_4 O_5 O_5

3,5-Динитробензонитрил

3-Метокси-5-нитробензонитрил

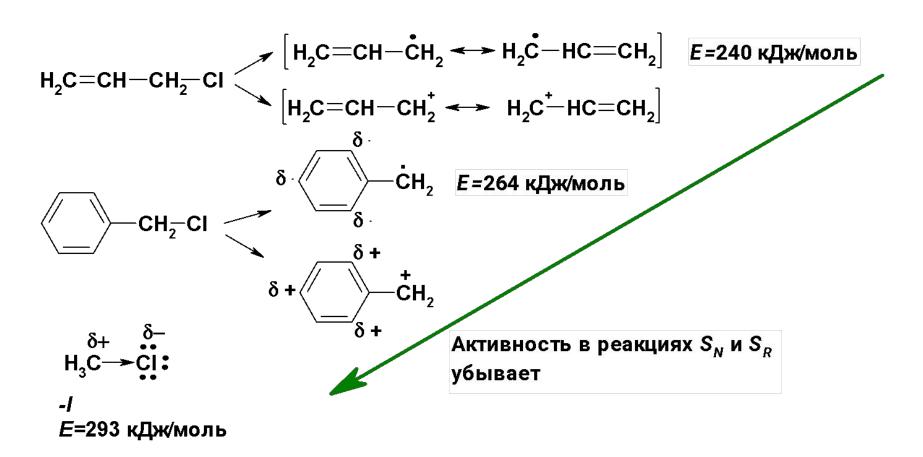

Ориентация при нуклеофильном замещении в ароматическом кольце

пара-σ-комплекс

мета-σ-комплекс

Электронные факторы

$$O_{N_{+}}^{+}O_{-}^{-}$$
 $O_{N_{+}}^{+}O_{-}^{-}$ $O_{N_{+}}^{+}O_{N_{+}}^{-}$ $O_{N_{+}}^{-}$ $O_{N_{+}}^{+}O_{N_{+}}^{-}$ $O_{N_{+}}^{+}O_{N_{+}}^{-}$ $O_$

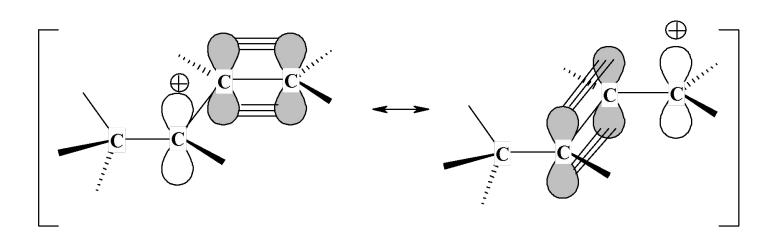


Электрофильное ароматическое замещение S_E Ar

Галогены дезактивирующие *о-*, *п-*ориентанты

Галогеналкены и галогенарены C_{sp2} - C_{sp3} -HIg

Реакционная способность галогенуглеводородов со связью $C_{sp}^{2}-C_{sp}^{3}$ -Hal


Методы синтеза

Аллильное галогенирование (S_R).

$$CH_{2} \leftarrow CH_{3} + CI_{2} \xrightarrow{h\nu, t^{0}} CH^{C} \rightarrow CH_{3} + HCI_{3}$$

Химические свойства

$$\left[\begin{array}{ccc} H_3C-CH_2^{\bigoplus}CH-HC=CH-CH_3 & \longrightarrow & H_3C-CH_2^{\bigoplus}-HC=CH-CH-CH_3 \\ \hline I & & & III \end{array} \right]$$

Реакции S_N . Аллильная перегруппировка.

$Mexahuзм S_N 2$

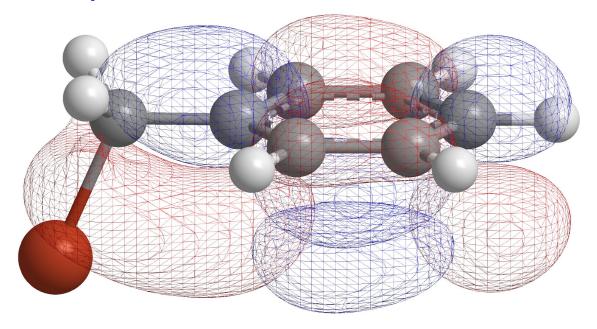
Mexaнизм S_N1

Синтез глицерина.

$$H_2C=CH-CH_3+CI_2 \xrightarrow{t^O} H_2C=CH-CH_2-CI \xrightarrow{H_2O, (CaCO_3)} 3$$
-хлор-1-пропен

$$H_2C = CH - CH_2 - OH$$
 $\xrightarrow{CI_2, H_2O}$ $\xrightarrow{HO - H_2C - CH - CH_2 - OH}$ \xrightarrow{CI} \xrightarrow{CI} $\xrightarrow{H_2O}$ $\xrightarrow{H_2C - CH - CH_2}$ $\xrightarrow{OH OH OH}$ \xrightarrow{OH}

Замещение аллильного галогена на алкокси-группу (S_N).


$$H_2C=CH-CH_2-CI \xrightarrow{C_2H_5OH, t^O} H_2C=CH-CH_2-O-C_2H_5$$
 -HCI 3-этоксипропен (аллилэтиловый эфир)

Подвижность аллильного галогена позволяет проводить замещение с использованием нейтрального нуклеофила

Бензилгалогениды вступают в реакцию $S_N 1$.

S_N^2 механизм не реализуется (стерические препятствия).

НВМО бромистого бензила

Примеры реакций алкилирования бензилхлоридом (S_N).

$$C_6H_5CH_2N(C_2H_5)_2$$
 $\xrightarrow{\qquad (C_2H_5)_2NH, \ K_2CO_3 \qquad 1/2\ Na_2S\ (C_2H_5OH)}$ $\xrightarrow{\qquad 1/2\ C_6H_5CH_2SCH_2C_6H_5}$ $\xrightarrow{\qquad 1/2\ C_6H_5CH_2CH_2SCH_2C_6H_5}$ $\xrightarrow{\qquad 1/2\ C_6H_5CH_2CH_2SCH_2CH_2SCH_2C_6H_5}$ $\xrightarrow{\qquad 1/2\ C_6H_5CH_2CH_2SCH_2C_6H_5}$ $\xrightarrow{\qquad 1/2\ C_6H_5CH_2CH_2SCH_2C_6H_5}$ $\xrightarrow{\qquad 1/2\ C_6H_5CH_2SCH_2C_6H_5}$ $\xrightarrow{\qquad 1/$

Бензилгалогениды – лакриматоры.

$$C_6H_5-CH_2-CI \xrightarrow{Nal} C_6H_5-CH_2-I \xrightarrow{H_2O} C_6H_5-CH_2-OH + HI$$

$$\downarrow H_2O$$

$$C_6H_5-CH_2-OH + HCI$$