

Экологическое нормирование

Макарова Анна Сергеевна

Воздух рабочей зоны

При нормировании химических веществ в воздухе рабочей зоны следует прежде всего определится со следующими понятиями:

«Рабочая зона» определяется как пространство высотой до 2 м от уровня пола или площадки, на котором находятся места постоянного или временного пребывания работающих. Постоянное рабочее место-место на котором работающий находится большую часть своего рабочего времени (более 50% или более 2 часов непрерывно).

Виды ПДКр.з.

Максимальная разовая ПДКм.р. — концентрация вредного вещества при выполнении операций (или на этапах технологического процесса), сопровождающихся максимальным выделением вещества в воздух рабочей зоны, усредненная по результатам непрерывного или дискретного отбора проб воздуха за 15 мин. для химических веществ и 30 мин. для аэрозолей преимущественно фиброгенного действия (АПФД)

Среднесменная ПДКр.з. - Предельно допустимая концентрация вещества для воздуха рабочей зоны-это концентрация, которая при ежедневной (кроме выходных дней) работе в течение 8 часов и не более 40 часов в неделю в течение всего рабочего стажа не должна вызывать отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или отдаленные сроки жизни настоящего и последующих поколений.

Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны ГН 2.2.5.1313-03

Утверждены постановлением Главного государственного санитарного врача РФ от 30 апреля 2003 г. № 76

- □Дополнение № 1, утв. Постановлением Главного государственного санитарного врача РФ от 24.12.2003 N 160,
- □Дополнение N 2, утв. Постановлением Главного государственного санитарного врача РФ от 22.08.2006 N 24,
- □Дополнение N 3, утв. Постановлением Главного государственного санитарного врача РФ от 30.07.2007 N 56,
- □Дополнение N 4, утв. Постановлением Главного государственного санитарного врача РФ от 22.01.2009 N 3,
- □Дополнением N 5, утв. Постановлением Главного государственного санитарного врача РФ от 03.09.2009 N 56,
- □Дополнением N 6, утв. Постановлением Главного государственного санитарного врача РФ от 25.10.2010 N 137,
- □Дополнения N 7, утв. Постановлением Главного государственного санитарного врача РФ от 12.07.2011 N 96

ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ (ПДК) ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

	<u>.</u>						
N π/π	Наименование вещества	N CAS	Формула (не приводится)	Величина ПДК, мг/м3	Преимущест- венное агре- гатное сос- тояние в воздухе в условиях производства		Особенности действия на организм
1	2	3	4	5	6	7	8
1	Абразивный порошок из медеплавильного шлака	M. Salara de la companya de la compa		-/10	a	4	Φ
	Аверсектин-С (смесь 8 авермектинов А1а, А2а, В1а, А2а, А1в, А2в, В1в, В2в) Авертин N ед. Дополнения N 3, утв.	Постановлением	Главного государств	0,05	а арного врача РО	1 0 or 30.07	.2007 N 56)
3	4,4'-Азодибензойная кислота	586-91-4		3	a	3	
4	Азота диоксид	10102-44-0	8	2	п	3	0
5	Азота оксиды (в пере- счете на NO2)			5	п	3	0
6	Азота трифторид	7783-54-2		10/30	п	4	
7	+ Азотная кислота	7697-37-2		2	a	3	
8	Алкены (в пересчете на С)			300/100	п	4	

Номер Chemical Abstracts Service (CAS) (CASRN, CAS RN, CAS Number, CAS#)

Homep CAS — это номер, под которым химическое вещество (или смесь веществ) зарегистрировано в CAS.

Формат записи CAS: группа из трех чисел, объединенных дефисами; в этом наборе последнее число из 1 цифры, а предпоследнее — из 2.

Примеры CAS: 7732-18-5 (вода); 548491-80-1 (ZnFe2O4).

- •Сотрудники CAS, просматривают научную литературу, регистрируют каждый химический объект, обнаруженный в публикациях.
- •Номера присваиваются веществам простым и сложным, органическим, неорганическим и элементоорганическим, координационным, низкомолекулярным и высокомолекулярным (в том числе, белкам), ионам, минералам, сплавам, характерным смесям (в том числе, смесям неопределенного состава).
- •Присвоение номеров идет в хронологическом порядке,
- •В номер никакой химический или иной смысл не закладывается.

http://www.abc.chemistry.bsu.by/bulchinf/2009 1 6-8.pdf

Проблемы с подбором CAS

- 1) все формы искусственного аморфного диоксида кремния могут подвергнуться поверхностной обработке (физически или химически)
- 2) побочный продукт из электрической печи
- 3) частично преобразован в кристобалит

Оксид кремния 7631-86-9

Пояснения к таблице

- Преимущественное агрегатное состояние в воздухе в условиях производства а (аэрозоли) п (пары)
- Особенности действия на организм
 - О вещества с остронаправленным механизмом действия, требующие автоматического контроля за их содержанием в воздухе;
 - А вещества, способные вызывать аллергические заболевания в производственных условиях;
 - К канцерогены;
 - Ф аэрозоли преимущественно фиброгенного действия
- + соединения, при работе с которыми требуется специальная защита кожи и глаз; символ проставлен вслед за наименованием вещества;
- ++ вещества, при работе с которыми должен быть исключен контакт с органами дыхания и кожей при обязательном контроле воздуха рабочей зоны утвержденным методом на уровне чувствительности не менее 0,001 мг/м3. Для таких веществ значения ПДК не

Классификация опасности вещества по степени воздействия на организм ГОСТ 12.1.007-76. Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности (утв. Постановлением Госстандарта СССР от 10.03.1976 N 579) (ред. от 28.03.1990)

	Параметры	Класс опасности					
No	токсикометрии	Чрезвычайно	Высоко	Умеренно	Мало		
		опасные	опасные	опасные	опасные		
1	ПДК в воздухе рабочей						
	зоны, мг/м ³	Менее 0,1	0,1-1,0	1,1-10,0	>10		
2	Средняя смертельная						
	доза при введении в	< 15	15 –150	151-5000	> 5000		
	желудок, мг/кг						
4	Средняя смертельная	<100	100-500	501-2500	>2500		
	доза при нанесении на						
	кожу, $M\Gamma/M\Gamma/M^3$						
5	Средняя смертельная	< 500	500-5000	5001-50000	□ 50000		
	концентрация в воздухе,						
	$M\Gamma/M^3$						

Пример оценки и классификации медного купороса (CuSO₄)

 $DL_{50} = 960 \text{ мг/кг (крысы, в/ж)}$

Ведомство	Класс опасности	Оценка опасности
Ростехрегулирование <i>ГОСТ 12.1.007-76</i>	2	<u>Высокоопасное</u> вещество
Ростехнадзор Ф3 № 116-Ф3 om 21.06.1997	нет	Не классифицируется как опасное вещество
ΜΠΡ ΓΟCT 17.4.1.02-83	2	<u>Умеренно опасное</u> вещество
Минсельхо3 <i>Методические рекомендации № 2001/26</i>	3	<u>Умеренно опасное</u> вещество
Роспотребнадзор Постановление Главного государственного санитарного врача РФ №76 от 30.04.2003	2	<u>Высокоопасное</u> вещество
Минтранс ГОСТ 19433-88	9 (степень 3)	Малоопасное ядовитое вещество
Рекомендации ООН - СГС	4	Вредно при

проглатывании

ПДКр.з. для СО и СО $_2$

Углерод оксид (№ CAS 630-08-0) ПДКр.з. = 20 мг/м³ (п, О). При длительности работы в атмосфере, содержащей оксид углерода, не более 1 ч предельно допустимая концентрация оксида углерода может быть повышена до 50 мг/м³, при длительности работы не более 30 мин. - до 100 мг/м³, при длительности работы не более 15 мин. - до 200 мг/м³. Повторные работы при условиях повышенного содержания оксида углерода в воздухе рабочей зоны могут проводиться с перерывом не менее чем в 2 ч.

ГН 2.2.5.2100-06. Углерода диоксид (\mathbb{N}_2 CAS 124-38-9) ПДКр.з. = 27000/9000 мг/м3 (п).

ПДКр.з. для силикатсодержащих пылей (ГН 2.2.5.2895-11) – аэрозоли, класс опасности 3, мг/м³

Пыль хризотилсодержащая, при среднесменной концентрации респирабельных волокон хризотила более 2 волокон в миллилитре (в/мл)	2/0,5	Ф,К
Пыль хризотилсодержащая, при среднесменной концентрации респирабельных волокон хризотила от 1 до 2 в/мл	4/1	Ф,К
Пыль хризотилсодержащая, при среднесменной концентрации респирабельных волокон хризотила менее 1 в/мл	6/2	Ф,К
Асбесты амфиболовой группы (крокидолит, амозит, антофиллит, тремолит и др.), при среднесменной концентрации респирабельных волокон более 0,01 в/мл	0,5/0,1	Ф,К
Асбесты амфиболовой группы (крокидолит, амозит, антофиллит, тремолит и др.), при среднесменной концентрации респирабельных волокон 0,01 в/мл и менее	2/0,5	Ф,К
Слюды (флагопит, мусковит), тальк, талькопородные пыли, содержащие до 10% свободного диоксида кремния при среднесменной концентрации респирабельных волокон амфиболовых асбестов 0,01 в/мл и менее	8/4	Ф

ПДКр.з. для силикатсодержащих пылей (ГН 2.2.5.2895-11) — аэрозоли, класс опасности 3, мг/м^{3 (продолжение)}

Тальк, натуральный тальк, вермикулит, содержащие примеси тремолита, актинолита, антофиллита и других асбестов амфиболовой группы при среднесменной концентрации респирабельных волокон амфиболовых асбестов более 0,01 в/мл	0,5/0,1	Ф,К
Муллитовые (не волокнистые) огнеупоры	8/4	Φ
Искусственные минеральные волокна (стекловолокно, стекловата, вата минеральная и шлаковая и др.), кремнийсодержащие волокна и др. при среднесменной концентрации респирабельных волокон 1 в/мл и более	4/1	Ф
Искусственные минеральные волокна (стекловолокно, стекловата, вата минеральная и шлаковая и др.), кремнийсодержащие волокна и др. при среднесменной концентрации респирабельных волокон менее 1 в/мл	6/2	Φ
Высокоглиноземистая огнеупорная глина, цемент, оливин,	-/8	Ф

апатит,

Нормирование углеводородов,

	ПДКр. 3., мг/м ³	Класс опасности	
Углеводороды алифатические предельные C_1 - C_{10} (в пересчете на C)	900/300	4	П
Бензин (растворитель, топливный)	300/100	4	П
Керосин (в пересчете на С)	600/200	4	п
Бензол+	15/5	2	п, К

ОБУВ

ОБУВ вредных веществ в воздухе рабочей зоны – временный (действует в течение 3 лет) ориентировочный гигиенический норматив, устанавливаемый на основании расчетов по параметрам токсикометрии веществ, с помощью интер- и экстраполяции в рядах соединений, близких по химической структуре, физическим и химическим свойствам и характеру действия. ОБУВ применяется для условий опытных и полузаводских установок на период, предшествующий проектированию производства. В отдельных случаях, по согласованию с органами госсанэпиднадзора, допускается при проектировании производства использование ОБУВ с величиной менее 1 мг/м^3

ГН 2.2.5.2308-07. Ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны

(C N	зменениями от 22 января, 3 сентября 2	009 г.,	1 октября 2010 г.)		
N n/n	Наименование вещества	№ CAS	Формула	Величина ОБУВ, мг/м ³	Преимущественное агрегатное состояние в воздухе в условиях производства
1	2	3	4	5	6
1	Абомин		37	0,5	а
2	Аденозинтрифосфат динатрия	987-65- 5	C ₁₀ H ₁₄ N ₅ Na ₂ O ₁₃ P ₃	5	a
3	(1-Аза-3-оксобицикло[2,2,2] октан) гидрохлорид	1193- 65-3	C ₇ H ₁₁ NO·ClH	0,3	а
4	3'-Азидо-3'-деокситимидин	30516- 87-1	C ₁₀ H ₁₃ N ₅ O ₄	0,01	а
5	Азоциклотридеканон	2947- 04-6	C ₁₂ H ₂₃ NO	10	a
6	Алкилпропилендиамин ⁺		(CH ₂) _n C ₄ H ₁₂ N	1	а
7	Алкилтриметиламинийхлорид ⁺		(C ₁₁₋₁₉)CIN	0,5	а
8	2-Аминобутандиоат калия	14007-	C ₄ H ₇ K _x NO ₄	5	a

Атмосферный воздух населенных мест

- В основу гигиенического нормирования атмосферных загрязнений положены следующие три критерия вредности, сформулированные В.А. Рязановым:
- 1. Допустимой признается только та концентрация вещества в атмосферном воздухе, которая не оказывает на человека прямого или косвенного вредного или неприятного воздействия, не оказывает влияния на самочувствие и состояние работоспособности.
- 2. Привыкание к загрязнителям атмосферного воздуха должно рассматриваться как неблагоприятный эффект.
- 3. Концентрации химических веществ в атмосферном воздухе, которые неблагоприятно действуют на растительность, климат местности (микроклимат), прозрачность атмосферы и условия жизни населения,

следует считать недопустимым.

Предельно допустимая концентрация (ПДК) атмосферных загрязнений — это концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного действия на настоящее и будущие поколения, не снижающая работоспособности человека, не ухудшающая его самочувствия и санитарно- бытовых условий жизни..

В зависимости от показателя вредности атмосферные загрязнители подразделяются на 4 группы: преимущественно рефлекторного действия; преимущественно резорбтивного действия и рефлекторно-резорбтивного действия, санитарногигиенического действия.

Водная среда

Особенность гигиенического нормирования химических веществ в водной среде обусловлена универсальной ролью воды в биосфере

uni Twin

и хозяйственной деятельности, что предполагает необходимость нормирования экзогенных химических веществ в зависимости от вида использования воды. С гигиенических позиций оценивается уровень загрязнения воды, предназначенной для хозяйственно-питьевого и культурно-бытового водопользования.

Предельно допустимая концентрация (ПДК) химического вещества в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования - максимальная концентрация вещества в воде, которая при поступлении в организм в течение всей жизни не должна оказывать прямого или опосредованного влияния на здоровье населения в настоящем и последующих поколениях, в том числе в отдаленные сроки жизни, а также не ухудшать гигиенические условия водопользования.

Критерии для обоснования необходимости разработки гигиенических нормативов в воздухе и воде.

Информация, необходимая для принятия решения о необходимости гигиенического нормирования химического вещества

Область применения.

Объем производства, применения, выброса в атмосферу и сброса в воду водных объектов (отдельного предприятия и по России в целом).

Форма выпуска.

Структурная формула.

Молекулярная (атомная) масса.

Физико-химические показатели:

Токсикологические показатели:

Острая токсичность при введении в желудок (DL50), при аппликации на кожу (DL50), при ингаляции (CL50). Показатели кумулятивности, Раздражающее действие на кожу и глаза, Кожно-резорбтивное действие, Сенсибилизирующее действие, отдаленные эффекты

