

Филатов Александр Юрьевич

(Главный научный сотрудник, доцент ШЭМ ДВФУ)

alexander.filatov@gmail.com

http://vk.com/alexander.filatov, http://vk.com/baikalreadings

Лекции 7.1-7.2

Модели обработки остатков *ARMA*.

Лаговые модели

Модели обработки остатков

$$y_t = T_t + S_t + \varepsilon_t$$

Из исходного временного ряда y_t исключаем всю неслучайную составляющую, в частности, тренд и сезонность, и переходим к ряду остатков ε_t . В отличие от пространственных выборок во временных рядах остатки тоже можно моделировать.

Автоковариационная и автокорреляционная функция:

$$\gamma(\tau) = \operatorname{cov}(\varepsilon_{t}; \varepsilon_{t+\tau}) = \frac{1}{T - \tau} \sum_{t=1}^{T - \tau} \varepsilon_{t} \varepsilon_{t+\tau} = KOBAP(\varepsilon_{t}; \varepsilon_{t+\tau}),$$

$$r(\tau) = r(\varepsilon_{t}; \varepsilon_{t+\tau}) = \frac{\gamma(\tau)}{\gamma(0)} = \left(\frac{1}{T - \tau} \sum_{t=1}^{T - \tau} \varepsilon_{t} \varepsilon_{t+\tau}\right) / \left(\frac{1}{T} \sum_{t=1}^{T} \varepsilon_{t}^{2}\right).$$

$$\gamma(\tau) = \gamma(-\tau), \quad r(\tau) = r(-\tau).$$

Частная автокорреляционная функция — устранено влияние всех промежуточных членов ряда между ε_t и $\varepsilon_{t+\tau}$:

$$r_{uacm}(\tau) = r(\varepsilon_t; \varepsilon_{t+\tau} \mid \varepsilon_{t+1} = \dots = \varepsilon_{t+\tau-1} = 0).$$

- Авторегрессия первого порядка. Марковский процесс AR(1)

Марковский процесс AR(1):

$$\varepsilon_t = \alpha \varepsilon_{t-1} + \delta_t$$
, δ_t – белый шум, $E\delta_t \equiv 0$, $D\delta_t = \sigma_0^2$.

Идентификация модели: найти $\hat{\alpha}$ и $\hat{\sigma}_0^2$.

Домножим на ε_t , ε_{t-1} , ε_{t-2} и т.д. и перейдем к математическим ожиданиям:

 $r(\tau) = \alpha r(\tau - 1) = r^{\tau}(1).$

$$E(\varepsilon_{t}\varepsilon_{t}) = E(\alpha\varepsilon_{t-1} + \delta_{t})^{2} = \alpha^{2}E\varepsilon_{t-1}^{2} + 2\alpha E(\varepsilon_{t-1}\delta_{t}) + E\delta_{t}^{2},$$

$$E(\varepsilon_{t}\varepsilon_{t-1}) = E(\alpha\varepsilon_{t-1}^{2} + \delta_{t}\varepsilon_{t-1}) = \alpha E\varepsilon_{t-1}^{2} + E(\delta_{t}\varepsilon_{t-1}),$$

$$E(\varepsilon_{t}\varepsilon_{t-2}) = E(\alpha\varepsilon_{t-1}\varepsilon_{t-2} + \delta_{t}\varepsilon_{t-2}) = \alpha E(\varepsilon_{t-1}\varepsilon_{t-2}) + E(\delta_{t}\varepsilon_{t-2}).$$

......

$$\gamma(0) = \alpha^2 \gamma(0) + \sigma_0^2,$$

 $\gamma(1) = \alpha \gamma(0),$ $r(1) = \alpha r(0),$
 $\gamma(2) = \alpha \gamma(1).$ $r(2) = \alpha r(1).$

Итоговые формулы:

$$\hat{\alpha} = \frac{\hat{\gamma}(1)}{\hat{\gamma}(0)} = \hat{r}(1), \quad \hat{\sigma}_0^2 = (1 - \hat{\alpha}^2)\hat{\gamma}(0).$$

- Авторегрессия второго порядка. Процесс Юла AR(2)

Процесс Юла AR(2):

$$\varepsilon_t = \alpha_1 \varepsilon_{t-1} + \alpha_2 \varepsilon_{t-2} + \delta_t.$$

Идентификация модели: найти $\hat{lpha}_1,\hat{lpha}_2$ и $\hat{\sigma}_0^2$.

$$E(\varepsilon_{t}\varepsilon_{t}) = E(\alpha_{1}\varepsilon_{t-1}\varepsilon_{t} + \alpha_{2}\varepsilon_{t-2}\varepsilon_{t} + \delta_{t}\varepsilon_{t}) =$$

$$= \alpha_{1}E(\varepsilon_{t-1}\varepsilon_{t}) + \alpha_{2}E(\varepsilon_{t-2}\varepsilon_{t}) + E(\alpha_{1}\varepsilon_{t-1}\delta_{t} + \alpha_{2}\varepsilon_{t-2}\delta_{t} + \delta_{t}^{2})$$

$$E(\varepsilon_{t}\varepsilon_{t-1}) = E(\alpha_{1}\varepsilon_{t-1}^{2} + \alpha_{2}\varepsilon_{t-2}\varepsilon_{t-1} + \delta_{t}\varepsilon_{t-1}) = \alpha_{1}E\varepsilon_{t-1}^{2} + \alpha_{2}E(\varepsilon_{t-2}\varepsilon_{t-1}) + E(\delta_{t}\varepsilon_{t-1}),$$

$$E(\varepsilon_{t}\varepsilon_{t-2}) = E(\alpha_{1}\varepsilon_{t-1}\varepsilon_{t-2} + \alpha_{2}\varepsilon_{t-2}^{2} + \delta_{t}\varepsilon_{t-2}) = \alpha_{1}E(\varepsilon_{t-1}\varepsilon_{t-2}) + \alpha_{2}E\varepsilon_{t-2}^{2} + E(\delta_{t}\varepsilon_{t-2}).$$

 $\gamma(0) = \alpha_1 \gamma(1) + \alpha_2 \gamma(2) + \sigma_0^2,$

$$\gamma(1) = \alpha_1 \gamma(0) + \alpha_2 \gamma(1), \qquad r(1) = \alpha_1 r(0) + \alpha_2 r(1),$$

$$\gamma(2) = \alpha_1 \gamma(1) + \alpha_2 \gamma(0).$$
 $r(2) = \alpha_1 r(1) + \alpha_2 r(0).$

Итоговые формулы:

$$\hat{\alpha}_1 = \frac{\hat{r}(1) - \hat{r}(1)\hat{r}(2)}{1 - \hat{r}^2(1)}, \quad \hat{\alpha}_1 = \frac{\hat{r}(2) - \hat{r}^2(1)}{1 - \hat{r}^2(1)}, \quad \hat{\sigma}_0^2 = \hat{\gamma}(0)(1 - \hat{\alpha}_1\hat{r}(1) - \hat{\alpha}_2\hat{r}(2)).$$

Авторегрессия порядка *p*: *AR*(*p*)

Общий вид авторегрессионной модели $\overline{AR(p)}$:

$$\varepsilon_{t} = \alpha_{1}\varepsilon_{t-1} + \alpha_{2}\bar{\varepsilon_{t-2}} + \dots + \alpha_{p}\varepsilon_{t-p} + \delta_{t}.$$

Идентификация модели: найти
$$\hat{\alpha}_1,...,\hat{\alpha}_p$$
 и $\hat{\sigma}_0^2$.
$$E(\varepsilon_t \varepsilon_t) = E(\alpha_1 \varepsilon_{t-1} \varepsilon_t + ... + \alpha_p \varepsilon_{t-p} \varepsilon_t + \delta_t \varepsilon_t), \qquad \gamma(0) = \alpha_1 \gamma(1) + ... \alpha_p \gamma(p) + \sigma_0^2,$$

$$E(\varepsilon_t \varepsilon_{t-1}) = E(\alpha_1 \varepsilon_{t-1}^2 + ... + \alpha_p \varepsilon_{t-p} \varepsilon_{t-1} + \delta_t \varepsilon_{t-1}), \qquad \gamma(1) = \alpha_1 \gamma(0) + ... + \alpha_p \gamma(p-1),$$

$$E(\varepsilon_{t}\varepsilon_{t-p}) = E(\alpha_{1}\varepsilon_{t-1}\varepsilon_{t-p} + \dots + \alpha_{p}\varepsilon_{t-p}^{2} + \delta_{t}\varepsilon_{t-p}), \quad \gamma(p) = \alpha_{1}\gamma(p-1) + \dots + \alpha_{p}\gamma(0).$$

Матричная форма:

$$R = \begin{pmatrix} 1 & r(1) & r(2) & \dots & r(p-1) \\ r(1) & 1 & r(1) & \dots & r(p-2) \\ \dots & \dots & \dots & \dots & \dots \\ r(p-1) & r(p-2) & r(p-3) & \dots & 1 \end{pmatrix} \quad \alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_p \end{pmatrix} \quad r = \begin{pmatrix} r(1) \\ r(2) \\ \dots \\ r(p) \end{pmatrix}$$

Итоговые формулы:

$$R\alpha = r$$
, $\hat{\alpha} = \hat{R}^{-1}\hat{r}$, $\hat{\sigma}_0^2 = \hat{\gamma}(0)(1 - \hat{\alpha}_1\hat{r}(1) - \dots - \hat{\alpha}_p\hat{r}(p))$

Модели скользящего среднего

Общий вид модели MA(q):

$$\varepsilon_{t} = \delta_{t} - \theta_{1}\delta_{t-1} - \theta_{2}\delta_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}.$$

Частные случаи:

$$MA(1)$$
: $\varepsilon_t = \delta_t - \theta \delta_{t-1}$.

$$MA(2)$$
: $\varepsilon_t = \delta_t - \theta_1 \delta_{t-1} - \theta_2 \delta_{t-2}$.

Двойственность в представлении моделей AR(p) и MA(q):

$$AR(1)$$
: $\varepsilon_{t} = \alpha \varepsilon_{t-1} + \delta_{t}$, $\varepsilon_{t-1} = \alpha \varepsilon_{t-2} + \delta_{t-1}$, $\varepsilon_{t} = \alpha^{2} \varepsilon_{t-2} + \alpha \delta_{t-1} + \delta_{t}$ $\varepsilon_{t-2} = \alpha \varepsilon_{t-3} + \delta_{t-2}$, $\varepsilon_{t} = \alpha^{3} \varepsilon_{t-3} + \alpha^{2} \varepsilon_{t-2} + \alpha \delta_{t-1} + \delta_{t}$ $\varepsilon_{t} = \delta_{t} + \alpha \delta_{t-1} + \alpha^{2} \delta_{t-2} + ...$, $\left| \alpha \right| < 1$, $AR(1) \sim MA(+\infty)$. Аналогично, $AR(p) \sim MA(+\infty)$, $MA(q) \sim AR(+\infty)$.

Стационарность и обратимость:

Ряд AR(p) стационарен, если все корни характеристического уравнения $1-\alpha_1z-\alpha_2z^2$ но можулю больше единицы.

Ряд MA(q) стационарен всегда, но обратим (представим в виде AR(p)), если все корни $1-\theta_1z-\theta_2z^2-$ по θ_1 больше единицы.

Скользящее среднее первого порядка: МА(1)

Модель *MA*(1):

$$\varepsilon_t = \delta_t - \theta \delta_{t-1}$$
.

Идентификация модели: найти $\hat{\theta}$ и $\hat{\sigma}_0^2$.

$$\gamma(0) = E(\varepsilon_{t}\varepsilon_{t}) = E(\delta_{t} - \theta\delta_{t-1})^{2} = E\delta_{t}^{2} - 2\theta E(\delta_{t}\delta_{t-1}) + \theta^{2}E\delta_{t-1}^{2} = \sigma_{0}^{2}(1 + \theta^{2})$$

$$\gamma(1) = E(\varepsilon_{t}\varepsilon_{t-1}) = E(\delta_{t} - \theta\delta_{t-1})(\delta_{t-1} - \theta\delta_{t-2}) = 0$$

$$= E(\delta_{t}\delta_{t-1}) - \theta E\delta_{t-1}^{2} - \theta E(\delta_{t}\delta_{t-2}) + \theta^{2}E(\delta_{t-1}\delta_{t-2}) = -\theta\sigma_{0}^{2}.$$

$$r(1) = \frac{\gamma(1)}{\gamma(0)} = -\frac{\theta}{1 + \theta^{2}},$$

 $heta^2 + rac{ heta}{\hat{r}(1)} + 1 = 0$. Выбираем из двух корней тот, который удовлетворяет условию | heta| < 1. $\hat{\sigma}_0^2 = rac{\hat{\gamma}(0)}{1+\hat{ heta}^2}$.

$$\hat{\sigma}_0^2 = \frac{\gamma(0)}{1 + \hat{\theta}^2}$$

Скользящее среднее порядка *q*: *MA*(*q*)

Модель MA(q):

$$\varepsilon_t = \delta_t - \theta_1 \delta_{t-1} - \dots - \theta_q \delta_{t-q}.$$

Идентификация модели: найти $\hat{\theta}_1,...$ у $\hat{\theta}_q$ $\hat{\sigma}_0^2$.

$$\begin{split} \gamma(0) &= E(\varepsilon_t \varepsilon_t) = E\left(\delta_t - \theta_1 \delta_{t-1} - \dots - \theta_q \delta_{t-q}\right) \left(\delta_t - \theta_1 \delta_{t-1} - \dots - \theta_q \delta_{t-q}\right) = \\ &= \sigma_0^2 \left(1 + \theta_1^2 + \dots + \theta_q^2\right). \end{split}$$

$$\begin{split} \gamma(1) &= E(\varepsilon_t \varepsilon_{t-1}) = E(\delta_t - \theta_1 \delta_{t-1} - \ldots - \theta_q \delta_{t-q}) (\delta_{t-1} - \theta_1 \delta_{t-2} - \ldots - \theta_q \delta_{t-q-1}) = \\ &= \sigma_0^2 \left(-\theta_1 + \theta_2 \theta_1 + \theta_3 \theta_2 \ldots + \theta_q \theta_{q-1} \right). \end{split}$$

$$\gamma(\tau) = E(\varepsilon_t \varepsilon_{t-\tau}) = E(\delta_t - \theta_1 \delta_{t-1} - \dots - \theta_q \delta_{t-q}) (\delta_{t-\tau} - \theta_1 \delta_{t-1-\tau} - \dots - \theta_q \delta_{t-q-\tau}) =$$

$$= \sigma_0^2 (-\theta_\tau + \theta_{\tau+1} \theta_1 + \theta_{\tau+2} \theta_2 \dots + \theta_q \theta_{q-\tau}), \quad \tau = 1, 2, \dots, q.$$

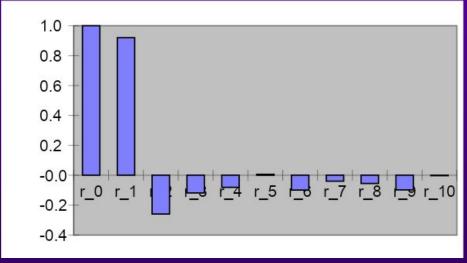
$$r(\tau) = \frac{-\theta_{\tau} + \theta_{\tau+1}\theta_1 + \theta_{\tau+2}\theta_2 \dots + \theta_q\theta_{q-\tau}}{1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2}, \quad \tau = 1, 2, \dots, q.$$

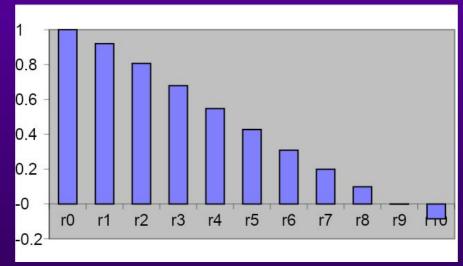
Идентификация модели осуществляется с помощью решения системы квадратичных уравнений $r(\tau) = \hat{r}(\tau), \quad \tau = 1, 2, ..., q$.

Выявление порядка модели с помощью коррелограмм

Коррелограмма — гистограмма коэффициентов корреляции $r(\tau)$. **Частная коррелограмма** — гистограмма частных коэффициентов корреляции $r_{\text{част}}(\tau)$.

Для AR(p) $r_{\text{част}}(\tau) = 0$ при $\tau > p$, $r(\tau)$ экспоненциально убывает. **Для** MA(q) $r(\tau) = 0$ при $\tau > q$, $r_{\text{част}}(\tau)$ экспоненциально убывает.





 $r(\tau)$

Иллюстрация для модели AR(1)

Авторегрессионные модели со скользящими средними в остатках

Модель ARMA(p, q):

$$\varepsilon_{t} = \alpha_{1}\varepsilon_{t-1} + \dots + \alpha_{p}\varepsilon_{t-p} + \delta_{t} - \theta_{1}\delta_{t-1} - \dots - \theta_{q}\delta_{t-q}.$$

Замечание:

 ε_{t} – не зависит от будущих δ_{t} , но зависит от прошлых и текущих.

Идентификация модели: найти $\hat{\alpha}_1,...,\hat{\alpha}_p$ $\hat{\theta}_1,...,\hat{\theta}_q$ $\hat{\sigma}_0^2$.

Этап 1: нахождение $\alpha_1, ..., \alpha_p$ из системы линейных уравнений порядка p.

$$\begin{split} & \varepsilon_{t} - \alpha_{1}\varepsilon_{t-1} - \dots - \alpha_{p}\varepsilon_{t-p} = \delta_{t} - \theta_{1}\delta_{t-1} - \dots - \theta_{q}\delta_{t-q}. \\ & \left\{ r(q+1) - \alpha_{1}r(q) - \dots - \alpha_{p}r(q+1-p) = 0, \right. \\ & \left. r(q+2) - \alpha_{1}r(q+1) - \dots - \alpha_{p}r(q+2-p) = 0, \right. \\ & \left. r(q+p) - \alpha_{1}r(q+p-1) - \dots - \alpha_{p}r(q) = 0. \right. \\ \end{split}$$

Подставляем выборочные значения r(k) и находим $\alpha_1, ..., \alpha_p$.

Авторегрессионные модели со скользящими средними в остатках

Этап 2: нахождение $\theta_1, ..., \theta_q$ из системы нелинейных уравнений порядка q.

$$(0): \quad \varepsilon_t - \alpha_1 \varepsilon_{t-1} - \dots - \alpha_p \varepsilon_{t-p} = \delta_t - \theta_1 \delta_{t-1} - \dots - \theta_q \delta_{t-q}.$$

Протиражируем соотношение (0) для t+1,...,t+q.

(1):
$$\varepsilon_{t+1} - \alpha_1 \varepsilon_t - \dots - \alpha_p \varepsilon_{t+1-p} = \delta_{t+1} - \theta_1 \delta_t - \dots - \theta_q \delta_{t+1-q}$$
,

(2):
$$\varepsilon_{t+2} - \alpha_1 \varepsilon_{t+1} - \dots - \alpha_p \varepsilon_{t+2-p} = \delta_{t+2} - \theta_1 \delta_{t+1} - \dots - \theta_q \delta_{t+2-q}$$
,

.....

$$(q): \quad \varepsilon_{t+q} - \alpha_1 \varepsilon_{t+q-1} - \dots - \alpha_p \varepsilon_{t+q-p} = \delta_{t+q} - \theta_1 \delta_{t+q-1} - \dots - \theta_q \delta_t.$$

Умножаем (0) на (1), (2),...,(q), переходим к математическому ожиданию. Получаем систему из q квадратных уравнений с q неизвестными. Находим из нее θ_1,\ldots,θ_q .

Замечание: удобно идентифицировать модель ARMA(p, 1), для $q \ge 2$ используются численные методы.

Операторы F_{\perp} и F_{\perp} сдвига во времени

Оператор «вперед»: $F_{+}\varepsilon_{t} = \varepsilon_{t+1}$;

Оператор «назад»: $F_{\epsilon_t} = \varepsilon_{t-1}$.

Свойства:

1.
$$F_{+} \cdot F_{-} = 1$$
, $F_{+}(F_{-}\varepsilon_{t}) = F_{+}\varepsilon_{t-1} = \varepsilon_{t}$.
2. $F_{+}^{k}\varepsilon_{t} = \varepsilon_{t+k}$, $F_{-}^{k}\varepsilon_{t} = \varepsilon_{t-k}$.

2.
$$F_{+}^{k} \varepsilon_{t} = \varepsilon_{t+k}, \quad F_{-}^{k} \varepsilon_{t} = \varepsilon_{t-k}.$$

3.
$$(c_0 + c_1 F_- + ... c_m F_-^m) \varepsilon_t = c_0 + c_1 \varepsilon_{t-1} + ... + c_m \varepsilon_{t-m},$$

 $(c_0 + c_1 F_+ + ... c_m F_+^m) \varepsilon_t = c_0 + c_1 \varepsilon_{t+1} + ... + c_m \varepsilon_{t+m}.$

ARMA(p,q):

$$(1 - \alpha_1 F_- - \alpha_2 F_-^2 - \dots - \alpha_p F_-^p) \varepsilon_t = (1 - \theta_1 F_- - \theta_2 F_-^2 - \dots - \theta_q F_-^q) \delta_t$$

Оператор «дельта»: $\Delta = 1 - F_{\perp}$:

$$\Delta \varepsilon_{t} = \varepsilon_{t} - \varepsilon_{t-1}.$$

Проблема перепараметризации

Пример модели АКМА(2, 1):

$$\begin{split} & \varepsilon_{t} - 1{,}3\varepsilon_{t-1} + 0{,}4\varepsilon_{t-2} = \delta_{t} - 0{,}5\delta_{t-1}.\\ & \left(1 - 1{,}3F_{-} + 0{,}4F_{-}^{2}\right)\!\!\varepsilon_{t} = \left(1 - 0{,}5F_{-}\right)\!\!\delta_{t}, \quad \left(1 - 0{,}5F_{-}\right)\!\!\left(1 - 0{,}8F_{-}\right)\!\!\varepsilon_{t} = \left(1 - 0{,}5F_{-}\right)\!\!\delta_{t},\\ & \left(1 - 0{,}8F_{-}\right)\!\!\varepsilon_{t} = \delta_{t}, \quad \varepsilon_{t} = 0{,}8\varepsilon_{t-1} + \delta_{t}. \end{split}$$

Часто множители не идентичны, но близки между собой:

$$(1-0.4F_{-})(1-0.8F_{-})\varepsilon_{t} = (1-0.5F_{-})\delta_{t},$$

Можно ожидать нестабильность оценок параметров. Если сокращение на похожие множители кажется некорректным, можно использовать сумму бесконечно убывающей геометрической прогрессии:

$$\frac{(1-0.4F_{-})(1-0.8F_{-})}{1-0.5F_{-}} = (1-0.4F_{-})(1-0.8F_{-})(1+0.5F_{-}+0.25F_{-}^{2}+0.125F_{-}^{3}+...) = (1-1.2F_{-}+0.32F_{-}^{2})(1+0.5F_{-}+0.25F_{-}^{2}+0.125F_{-}^{3}+...) \approx 1-0.7F_{-}.$$

$$\varepsilon_{t} = 0.7\varepsilon_{t-1} + \delta_{t}.$$

Проверка возможности упрощения модели ARMA(p,q)

Представление модели ARMA(p,q) в еще одной форме:

$$\prod_{i=1}^{p} \left(1 - \frac{1}{z_i(\alpha)} F_{-} \right) \varepsilon_t = \prod_{j=1}^{q} \left(1 - \frac{1}{z_j(\theta)} F_{-} \right) \delta_t,$$

 $\overline{z_i(\alpha)}$ – корни характеристического уравнения AR -модели,

 $z_i(\theta)$ – корни характеристического уравнения MA-модели.

Пример:

$$\begin{split} \varepsilon_{t} - 1, & 3\varepsilon_{t-1} + 0, 4\varepsilon_{t-2} = \delta_{t} - 0, 5\delta_{t-1}. \\ & 1 - 1, 3z + 0, 4z^{2} = 0, \\ & z_{1} = 1, 25, \quad z_{2} = 2, \\ & \left(1 - \frac{1}{2}F_{-}\right)\left(1 - \frac{1}{1, 25}F_{-}\right)\varepsilon_{t} = \\ & = (1 - 0, 5F_{-})(1 - 0, 8F_{-})\varepsilon_{t} = \\ & = \varepsilon_{t} - 1, 3\varepsilon_{t-1} + 0, 4\varepsilon_{t-2} \end{split}$$

$$= \delta_{t} - 0, 5\delta_{t-1}.$$

Многомерный временной ряд. Лаговые модели

Многомерный временной ряд:

$$x_1, x_2, ..., x_T;$$

 $y_1, y_2, ..., y_T.$

Можно учитывать лаг – запаздывание во времени.

Инфляция негативно влияет на экономический рост не сразу, а спустя некоторое время.

Лаг может быть распределенным — наблюдается распределенный во времени эффект воздействия.

$$y(t) = \alpha + \theta_0 x_t + \theta_1 x_{t-1} + \dots + \theta_T x_{t-T} + \varepsilon_t.$$

Зависимость расходов населения y(t) от наблюдаемых доходов x(t). θ_k — доля дохода, которая тратится через k периодов после получения. Если наблюдаемый доход равен истинному, $\Sigma \theta_k = 1, \, \theta_k \in [0; \, 1]$ Если наблюдаемый доход меньше истинного, $\Sigma \theta_k > 1$

Зависимость объемов основных фондов y(t) от инвестиций x(t).

Регрессионные модели с распределенными лагами

Проблемы использования обычных регрессионных моделей:

- 1. Неизвестен период распределенного во времени воздействия T.
- 2. Как правило, значение Т достаточно велико.
- 3. Малое по сравнению с числом параметров модели число наблюдений.
- 4. Высокая степень корреляции между объясняющими переменными.

Решение проблемы — особая структура модели!

Общий случай — зависимость большого числа коэффициентов дистрибутивной лаговой модели $\theta_0, \theta_1, ..., \theta_T$ от малого числа параметров $\alpha_1, ..., \alpha_m$.

Частные случаи:

- 1. Экспоненциальное убывание силы воздействия модель Койка.
- 2. Полиномиальная лаговая структура Ширли Алмон.

Предположения модели:

- 1. Период распределенного во времени воздействия велик, в пределе равен бесконечности.
- 2. Сила воздействия экспоненциально убывает.

$$y_t = \alpha + \theta_0 x_t + \theta_1 x_{t-1} + \theta_2 x_{t-2} + \dots + \varepsilon_t, \quad \theta_k = \theta_0 \lambda^k, \quad \lambda \in (0, 1).$$

Умножим исходную модель на λ и введем задержку на один период:

$$y_t = \alpha + \theta_0 x_t + \theta_0 \lambda x_{t-1} + \theta_0 \lambda^2 x_{t-2} + \dots + \varepsilon_t$$
$$\lambda y_{t-1} = \lambda \alpha + \theta_0 \lambda x_{t-1} + \theta_0 \lambda^2 x_{t-2} + \theta_0 \lambda^3 x_{t-3} + \dots + \lambda \varepsilon_{t-1}.$$

Вычтем второе неравенство из первого:

$$y_t - \lambda y_{t-1} = \alpha (1 - \lambda) + \theta_0 x_t + \varepsilon_t - \lambda \varepsilon_{t-1}.$$

Итоговая модель:

$$y_t = \alpha(1-\lambda) + \theta_0 x_t + \lambda y_{t-1} + \delta_t, \quad \delta_t = \varepsilon_t - \lambda \varepsilon_t.$$

Преимущества модели:

- 1. Бесконечное число параметров меняется на три: α , θ_0 , λ .
- 2. Исчезает проблема мультиколлинеарности.
- 3. Модель из дистрибутивно-лаговой превращается в авторегрессию.

Полиномиальная лаговая структура 18 Ширли Алмон

Предположения модели:

- 1. Период распределенного во времени воздействия велик, в пределе равен бесконечности.
- 2. Коэффициенты представляют собой полиномы от малого числа параметров $\alpha_1, ..., \alpha_m$.

$$\begin{aligned} y_t &= \alpha + \theta_0 x_t + \theta_1 x_{t-1} + \theta_2 x_{t-2} + \dots + \varepsilon_t, \\ \theta_k &= \alpha_0 + \alpha_1 k + \alpha_2 k^2 + \dots + \alpha_m k^m, \quad k = 0, \dots, T, \quad m \le 3. \end{aligned}$$

$$\begin{cases} \theta_0 = \alpha_0, \\ \theta_1 = \alpha_0 + \alpha_1 + \alpha_2 + \dots + \alpha_m, \\ \theta_2 = \alpha_0 + 2\alpha_1 + 4\alpha_2 + \dots + 2^m \alpha_m, \\ \theta_T = \alpha_0 + T\alpha_1 + T^2 \alpha_2 + \dots + T^m \alpha_m. \end{cases}$$

Полиномиальная лаговая структура 19 Ширли Алмон

$$y_{t} = \alpha + \theta_{0}x_{t} + \theta_{1}x_{t-1} + \theta_{2}x_{t-2} + \dots + \theta_{T}x_{t-T} + \varepsilon_{t} =$$

$$= \alpha + \alpha_{0}x_{t} +$$

$$+ \alpha_{0}x_{t-1} + \alpha_{1}x_{t-1} + \dots + \alpha_{m}x_{t-1} +$$

$$+ \alpha_{0}x_{t-2} + 2\alpha_{1}x_{t-2} + \dots + 2^{m}\alpha_{m}x_{t-2} +$$

$$+ \dots +$$

$$+ \alpha_{0}x_{t-T} + T\alpha_{1}x_{t-T} + \dots + T^{m}\alpha_{m}x_{t-T}.$$

Итоговая модель:

$$y_{t} = \alpha + \alpha_{0} (x_{t} + x_{t-1} + x_{t-2} + \dots + x_{t-T}) + \alpha_{1} (x_{t-1} + 2x_{t-2} + \dots + Tx_{t-T}) + \dots + \alpha_{m} (x_{t-1} + 2^{m} x_{t-2} + \dots + T^{m} x_{t-T}).$$

Большое число параметров (T+2) меняется на малое (m+2): $\alpha, \alpha_0, ..., \alpha_m$.

Спасибо за внимание!

<u>alexander.filatov@gmail.com</u> <u>http://vk.com/alexander.filatov, http://vk.com/baikalreadings</u>