Общая классификация грунтов

Требования к логической классификации

- 1. Сумма выделенных таксономических единиц равна объему родового понятия грунт
- 2. Классификационные признаки должны выбираться так, чтобы каждый грунт попадал в одну таксономическую единицу
- 3. В пределах одной таксономической единицы все таксоны более высокого порядка должны выделяться по признакам одного порядка
- 4. Классификационные признаки от одного уровня к другому может изменяться

Виды классификаций грунтов

- 1. Ф.П. Саваренский. «Инженерно-геологическая классификация горных пород и почв» 1937г
 - Выделены 5 групп: скальные, полускальные, мягкие связные, рыхлые несвязные, особые (торфы, засоленные), 17 классов и 38 подклассов по физическим свойствам
 - Недостатки: не отражен генезис грунтов

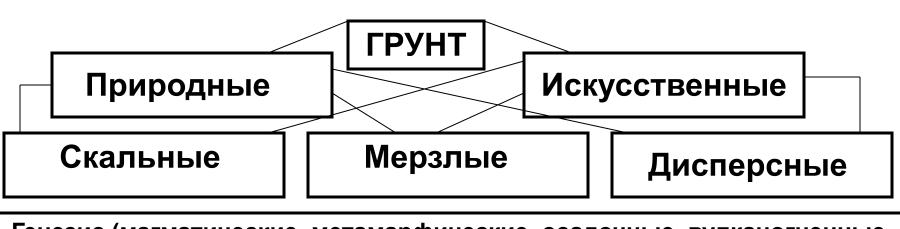
Саваренский Федор Петрович

Виды классификаций грунтов

2. **Е.М. Сергеев** «Генетическая классификация грунтов» - 1952г.

Выделены 7 типов: прочные кристаллические грунты (магматические и метаморфические породы); рыхлые (обломочные, песчаные и супесчаные), пластичные (лессы и глины); почвы; химически осажденные и органогенные грунты; сцементированные грунты; искусственные грунты.

Деление на классы, виды и группы проводится на основе размеров зерен, сланцеватости и др.


Недостатки: в меньшей степени учтены инженерногеологические свойства и громоздкость

Виды классификаций грунтов

- 3. **В.Д. Ломтадзе** «Инженерная петрология» 1970г двухкоординатная таблица, по горизонтали генетические типы пород, по вертикали их свойства.
- 4. **Г.К. Бондарик** «Общая классификация для инженерно-геологических целей» 1981г.

На разных классификационных уровнях учитываются разные признаки: генетические, петрографические, инженерно-физические

В.Д. Трофимов – «Общая классификация грунтов» - 1995г – ГОСТ – 25100-95

Генезис (магматические, метамарфические, осадочные, вулканогненные, криогенные, искусственно-созданные, искусственно-преобразованные)

Горные породы Почвы Осадки Антропогенные образования

Химико-минеральные особенности

Петрографические типы

Свойства грунтов

В данной классификации выделяют следующие таксономические единицы:

Царства: Природные и Искусственные (техногенные)

Классы: Скальные, Дисперсные и Мерзлые

Группы по генезису: Осадочные, магматические и др.

Типы – по вещественному составу: известняки и др.

Виды – по структурно-текстурным особенностям: трещиноватые, плотные

Разновидности: инженерно-геологические свойства. различные в каждом виде (частные): например в скальных – по прочности на одноосное сжатие.

Класс I. Природные скальные грунты Группа 1 - Скальные нерастворимые грунты

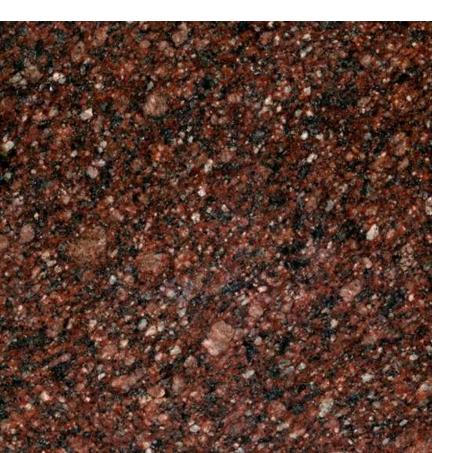
Включает в себя породы магматического, метаморфического и осадочного генезиса.

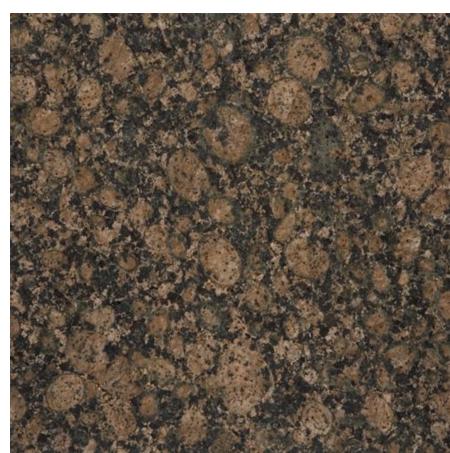
Характеризуются высокой плотностью, прочностью, выдерживают нагрузки значительно превышающие те, которые существуют в строительной практике

Породы морозостойкие, невлагоемкие, водопроницае-мые только по трещинам

Прочностные и деформационные свойства изменяются в широких пределах в зависимости от выветрелости пород.

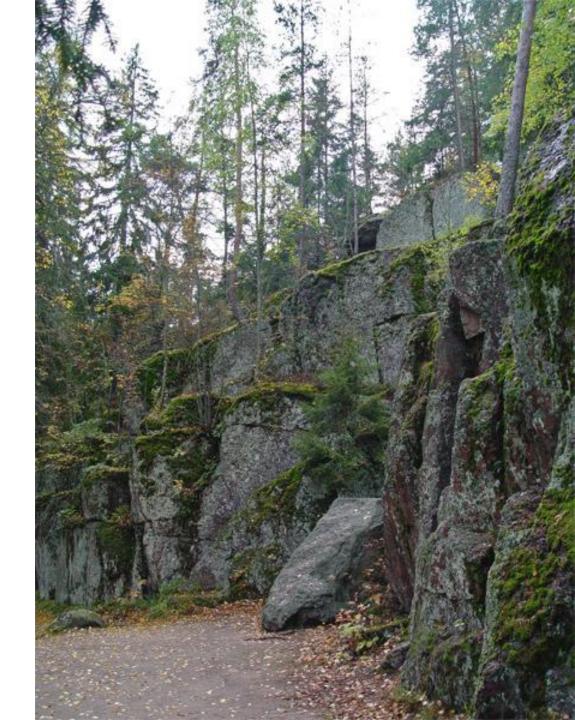
Выделяют подгруппы:


- 1. Магматические интрузивные 2. Магматические эффузивные
- 3. Осадочные 4.Метаморфические 5. Вулканогенно-осадочные


Магматические интрузивные породы

-Имеют низкую пористость 2-5%, плотность 2,57-3,27г/см³

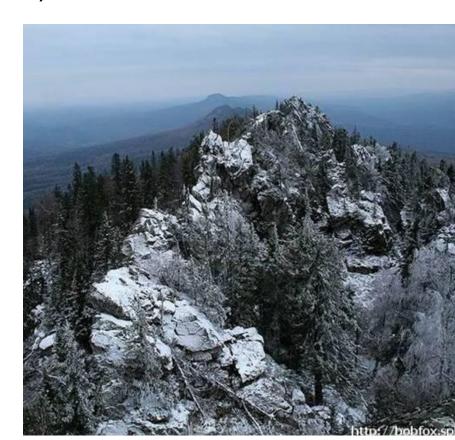
Наиболее распространенные породы


Граниты - по составу являются кислыми, в состав входит кварц, ортоклаз и биотит.

Увеличение доли плагиоклазов повышает прочность, биотита – уменьшает. Наиболее прочные мелкозернистые граниты (прочность на одноосное сжатие 200 МПа), у крупнозернистых снижается до 40-100 МПа.

Природные обнажения гранитов

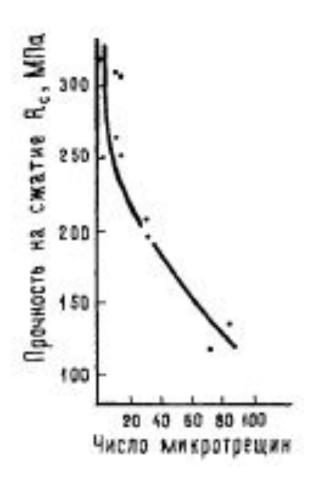
Выветрелый гранит



Гранитная облицовка **Диориты и кварцевые диориты –** относятся к породам среднего состава, состоят в основном из роговой обманки и плагиоклазов. Чаще всего имеют равномерно мелко- и среднезернистый состав.

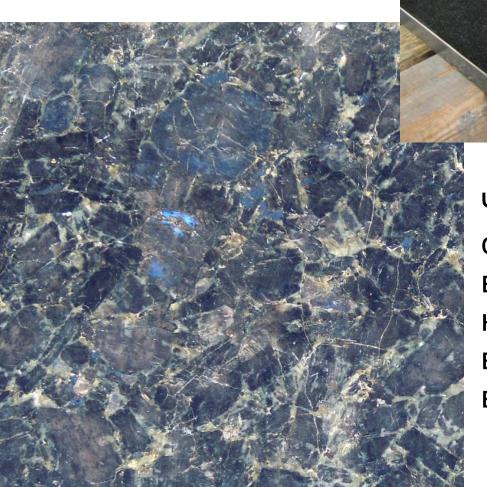
Плотность и прочность более высокая. Чем у гранитов (на одноосное сжатие – 170-240 МПа)

Выходы диоритов на Урале



Поделочный диорит

Габброиды – состав основной, состоят из оливина, роговой обманки и плагиокелазов, пористость ниже 2%, зернистость изменяется от афонитовой до крупнозернистой, прочность на одноосное сжатие составляет от 70 до 240МПа.



Зависимость прочности на одноосное сжатие от микротрещин

Столешница из габбро

Структура габбро

Часто трещиноваты, что способствует их выветрелости, неразрушенные породы – водонепроницаемы, выветрелые – до 40м/сут.

Перидотиты (ультрабазиты) – имеют ультраосновной состав, пористость менее 1%, наиболее известны месторождения на Кольском полуострове, обычно мелкозернистые. Плотность 2,86-3,30 г/см³.

Кемберлитовая трубка с перидотитом

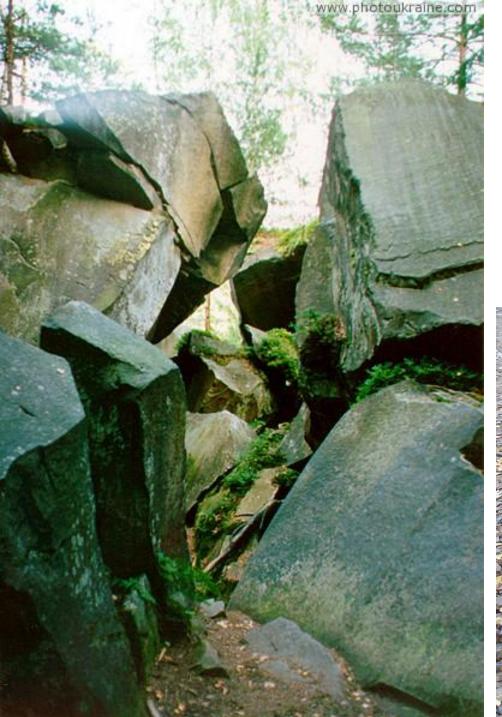
Неразмягчаемые, прочность на одноосное сжатие достигает 100 000 МПа, но только для нетрещиноватых разностей.

Уртиты (нефелиновые сиениты) – в составе преобладают нефелин, немного альбита, и эгирина.

Порода очень прочные $170-240 \text{ МПа, плотные} 2,7-2,9 г/см}^3.$

Rc, Mila

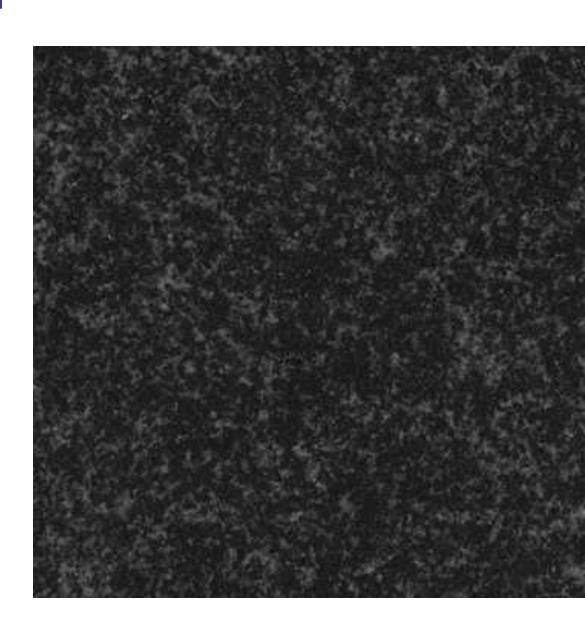
График зависимости прочности базальтов от их прочности



Магматические эффузивные породы

Базальты - наиболее распространенные, их объем в 5 раз превышает объем всех остальных эффузивных пород обычно им сопутствуют андезито-базальты и андезиты. Пористость от 0,5 до 70%, прочность от 30-40 до 250МПа.

Андезиты менее прочные


Выходы зеленоватых андезитов и плитка из андезита

Долериты и диабазы

пористость редко превышает 2%, прочность 150-180 МПа. Как правило, водонепроницаемы менее 0,01л/мин. Но часто встречаются выветрелые разности. Их прочность снижается до 50-70 МПа, водопроницаемость возрастает до 10 M/CYT

Выходы диабазов

Добыча диабазов

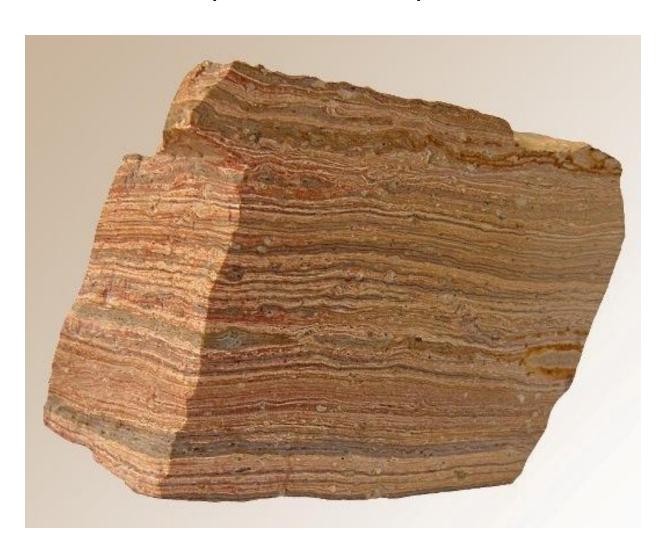
Порфириты (андезитовые, базальтовые) – имеют неоднородное строение и более низкую прочность (на одноосное сжатие) – 60-90 МПа. Повышение в их составе гидрослют и хлоритов резко снижает их прочность

Порфирит плагиоклазовый

Галька из окатанного порфирита плагиоклазового

Выходы порфиритов плагиоклазов

Трахиты характеризуются высокой пористостью и прочность их снижается до 60-70 МПа



Выходы трахитов

Липариты – отличаются повышенной прочностью и стойкостью к выветривания. Наиболее прочные фельзитовые липариты имеют прочность до 280МПа

Липарит

Выходы липаритов

Пирокластические породы (туфобрекчии, туфы, туфопесчаники) — характеризуются крайней неоднородностью и поэтому их свойства также сильно различаются, у наиболее плотных прочность достигает 280-300Мпа, у пористых снижается до менее 50 МПа.

Они легко выветриваются, превращаясь в глинистую массу и относятся к полускальным

Вулканические туфы на склонах вулкана

Выходы туфобрекчий

Выходы вулканических туфов на Филлипинах

Поселок на вулканическом туфе

Туфобрекчии

Метаморфические породы

- По прочности близки к магматическим породам из-за жестких кристаллических связей. Невыветрелые разность могут выдержать нагрузки значительно превышающие те, которые существуют в строительной практике.

Водонепроницаемы, деформируются как квазиупругие тела, из-за сланцеватости обладают анизотропностью свойств, кроме карбонатных нерастворимы в воде.

Из-за сланцеватости породы неустойчивы на склонах и бортах горных и строительных выработок.

Часто среди них встречаются выветрелые разности.

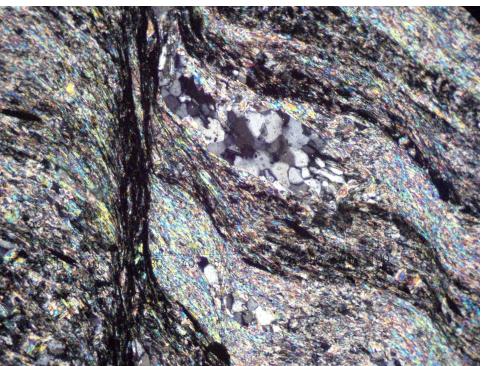
Глинистые сланцы и филлиты – имеют тонкослоистую текстуру и резко анизотропными свойствами. Прочность в сухом состоянии поперек сланцеватости достигает 50 МПа, поперек в 2-3 раза меньше, во влажном снижается.

Неморозостойкие, на склонах образуют осыпи из тонко листоватой щебенки, способствуют образованию селей.

Филлиты

Оруденелый филлит

Глинистые сланцы



Выходы глинистых склонов на склонах

Зеленые сланцы – расланцеватые породы, полностью утратившие первоначальную структуру и текстуру. Прочность выше, чем у глинистых сланцев (60 МПа в сухом состоянии и 40МПа – во влажном). Легко разрушаются при испытании на морозостойкость.

Структура сланцев

Зеленые сланцы

Кристаллические слюдяные сланцы – имеют болеее ярко выраженную слоистость, более прочные (140-170 МПа перпендикулярно сланцеватости и 70-80 МПа – вдоль, которая не снижается при водонасыщении). Наиболее прочные массивные биотитовые сланцы

Биотиитовый сланец

Брусчатка из зеленого сланца

Сланец слюдяной

Гнейсы –

характеризуются высокой плотностью (до 3,10г/см³), очень низкой пористостью (доли процента) и водопоглощением (менее 1%), средней прочностью (70-100 МПа).

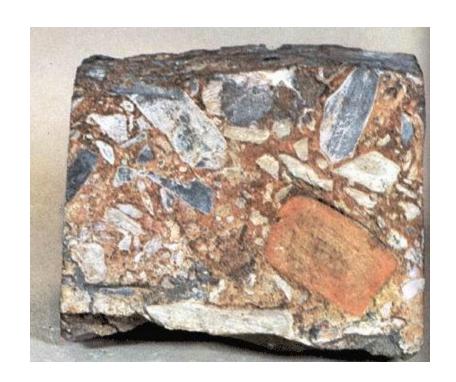
Достаточно устойчивы к выветриванию

Структура гнейсов

Кварциты – наиболее прочные и устойчивые метаморфические породы. Практически полностью сложены кварцем, чаще всего встречаются мелкозернистые разности. Плотность на одноосное сжатие составляет 150-200МПа. Пористость и водопоглощение составляет менее 1%.

Кварциты

Роговики — полностью перекристализованные породы, обычно это темные однородные мелкозернистые породы. По составу — кварц-биотитово-полевошпатовые. В инженерной практике рассматриваются как благоприятное основание для ответственных сооружений.



От магматических пород отличаются меньшей трещиноватостью и большей устойчивостью к выветриванию. Прочность на одноосное сжатие 60-150МПа. На склонах образуют обвалы, крупнощебнистые осыпи, курумы.

Валун роговика Скальные осадочные породы – их прочность определяется типом и составом цемента. Состав может быть железистый, карбонатный или кремнистый, последний наиболее прочный. Тип цемента- базальный, поровый, пленочный или регенерационный, последний наиболее прочный. Наиболее распространены конгломераты, брекчии и песчаники.

Конгломераты – это крепкорсцементированные породы, особенно если валуны и галька представлены окатанными невыветрелыми породами, а цемент железистый или кремнистый. Сопротивление одноосному сжатию достигает 100 МПа.

Песчаники – свойства сильно различаются в зависимости от размера зерен, состава зерен и цемента.

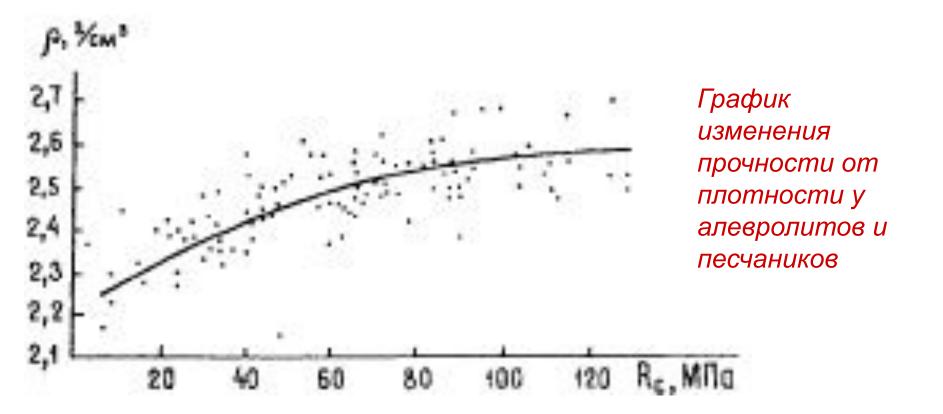
Наиболее прочные кварцевые песчаники с железистым или кремнистым цементом. Сопротивление сжатию 150-300МПа. Если цемент глинистый эта величина снижается до 80-120МПа.

Прочные песчаники в составе которых кварц, полевые шпаты, базальты, менее прочные агриллиты. Мелкозернистые разности обладают большей прочностью, чем крупнозернистые.

Выветрелые песчаники

Группа 2 - Полускальные нерастворимые грунты

Объединяет осадочные и вулканогенно-обломочные породы, временное сопротивлении сжатию в водонасыщенном состоянии составляет 5 МПа, но при прочном цементе могут приближаться к скальным.

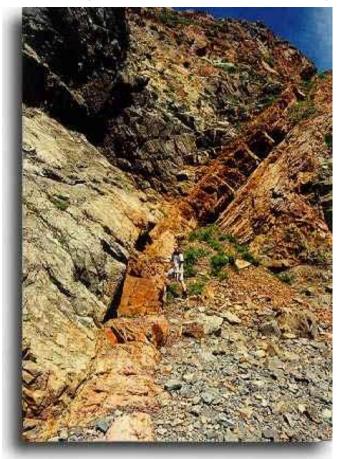

Подавляющая часть относится к размягчаемым грунтам. Плотность около 2%, пористость 25-40%, водопроницаемые до нескольких метров в в сутки, слоистая структура и анизотропность свойств, прочность в

сухом состояние от 2,5 до 15МПа.

Песчаники – свойства сильно различаются, преобладают морские кварцевые и орогенные полимиктовые.

Цемент преимущественно глинистый или карбонатный, по строению базальный, зерна преимущественно окатанные, по размеру различные. Прочность изменяется от 120 МПа до нескольких, пористость 25-40%

Разнообразие песчаников говорит о различной их инженерно-геологической оценки, крепкие – являются скальными породами, глинистые – полускальные, легко выветриваются.

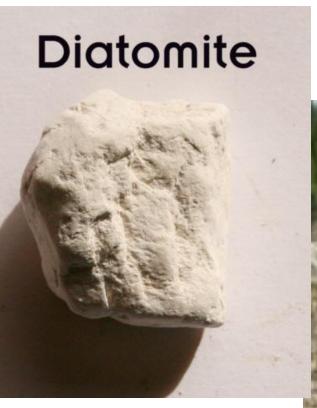

Алевролиты и агриллиты – образуются в результате окаменения пылевато-песчаных и глинистых пород. Залегают в виде широких слоев среди карбонатных или песчаных пород. Текстура – мелкослоистая.

Цемент базальный, преимущественно глинистый, но может быть карбонатным, кремнистым. Последний обладает повышенной прочностью. Пористость изменяется от 1-2% до 40%.

Прочность изменяется от 50-80МПа до менее 2-5 МПа. Обладают значительной влагоемкостью, размягчаются, легко выветриваются.

В инженерно-геологической практике оцениваются как породы обладающие худшими свойствами, чем песчаники, неморозостойкие, образуют подвижные осыпи.

Опоки – кремнистые органические осадочные породы, легкие тонкопористые породы, на 85-95% состоящие из опала, состоят из частиц размером менее 0,1мм.


Инженерно-геологические особенности опок — высокая пористость (до 60%) и влагоемкость, прочность на одноосное сжатие от 70 до 0,54 МПа, при водоносыщении резко снижается, слабая морозоустойчивость, неразмокаемые, помещенные в воду не размокают в течении нескольких месяцев. Обладают низкой водопроницаемостью, но из-за трещиноватости — коэффициент фильтрации до 5м/сут.

Трепел – высокопористая (до 65%) порода, дисперсная, на 75 % состоит из кремнезема, сцементированная глинистым или пылеватым материалом. В отличии от опок обладает низкой прочностью (менее 2МПа), быстро размокает в воде

Диатомит – плотность скелета около 1г/см³, прочность менее 2МПа, на 75% состоит из кремнезема, пористость более 60%, наименее прочные, неморозостойкие, набухают и размокают в воде.

Добыча диатомита в Ульяновской области

Группа 2 - Скальные и полускальные растворимые грунты

Галоиды, сульфатные и карбонатные породы, широко распространены в природе, склонны растворяться в воде, образуя пустоты и полости, вплоть до пещер

Известняки – наиболее распространенный тип карбонатных пород, образуют толщи мощностью десятки и сотни метров.

Среди них различают органогенные и хемогенных породы. Ораногенные известняки обладают высокой пористостью (35-40%), низкой плотностью. Хемогенные известняки — это плотные породы с пористостью 2-3%.

Добыча известняка в Одесской области

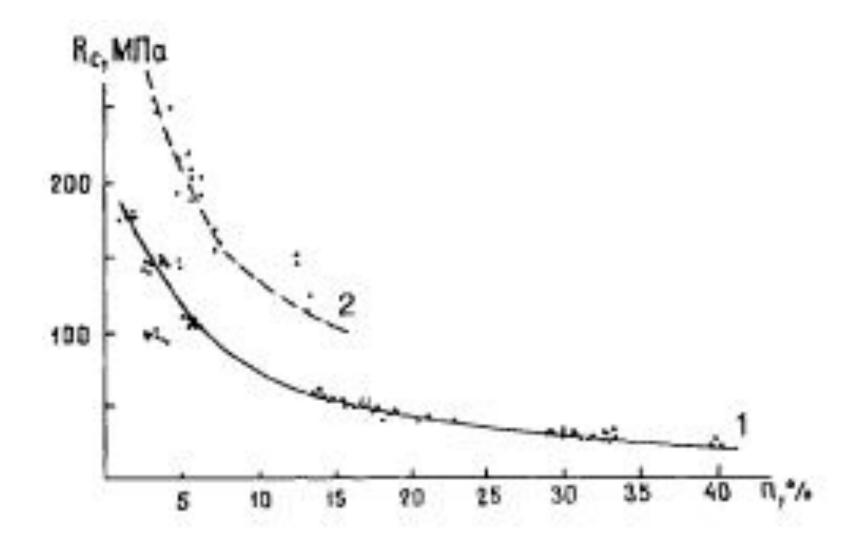
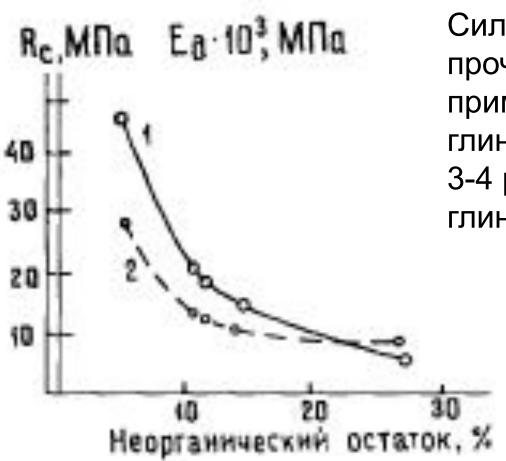



График связи прочности и порозности карбонатных пород: 1 известняки, 2- доломиты

У крупнопористых известняков –ракушечников прочность на одноосное сжатие менее 10МПа, у мелкозернистых кристаллических - более 250МПа.

Сильно снижают прочность известняков примеси, особенно глинистый материал — в 3-4 раза при увеличении глины с 5 до 30%.

Влияние содержание примесей на физико-механические свойства карбонатных пород

Мел – белая пористая порода состоящая целиком из раковин фораминифер и водорослей. На 98% состоит из СаСО₃. Широко распространен на юге России- в бассейне Дона, в Поволжье, в районе Курской магнитной аномалии.

В сухом состоянии прочный (до 20 МПа), во влажном приобретает мягкую консистенцию, легко растирается руками. Состоит из пылеватых частиц, пористость 30-55%, обладает высокой влагоемкостью и низкой

Доломиты – крупно и среднекристаллические породы. встречаются брекчевидные разности, содержат примеси кальцита и глинистого материала.

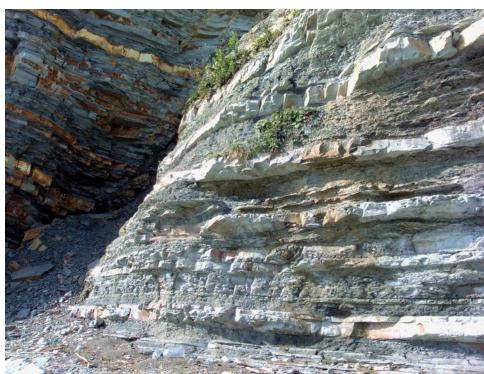
Прочность составляет 140-250 МПа в брекчевидных и мелкотрещиноватых разностях снижается до 40-60 МПа.

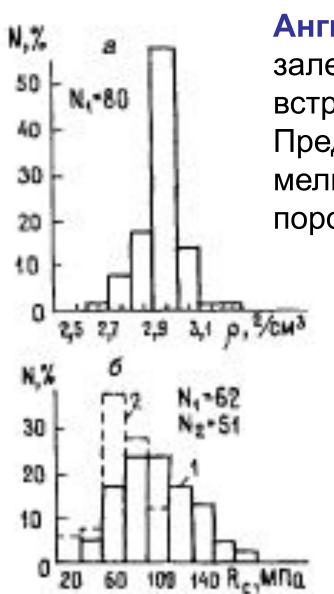
При фильтрации через них сульфатных вод образуются вторичные кальциты, которые легко выщелачиваются, образуя линзы доломитовой муки.

в строительстве доломитовая мука относится в строительстве относится к грунтам с неудовлетворительными свойствами — оплывает, обладая низкой водопроницаемостью плохо закрепляется тампонажными растворами.

Водопроницаемость карбонатных пород определяется их закартованностью.

Наиболее активно развивается карст в трещиноватых


породах.


Мергели – карбонатно-терригенные породы. Залегают слоями различной мощности, состоит из карбоната кальция и глины.

При преобладании карбоната мергели называют – глинистый известняк, пр преоблпадании глины – известковая (или доломитисиая) глина. Прочность от 30 до 50 МПа.

Ангидриты – сульфатные породы, залегают в виде линз и прослоев, встречаются в Предуралье и Предкавказье – массивные плотные мелко и среднекристаллические породы

Гистограммы плотности и прочности ангидритов: 1 сухой грунт, 2 -водонасыщенный

Гипсы – мягкие породы разной зернистости, залегают пластами незначительной мощности, переслаиваясь с ангидритами. Карстовые процессы протекают очень быстро, соизмеримо с временем существования инженерных сооружений.

Каменные соли – распространены на площади 2 млн. км². Распространены в Предуралье, Прикаспии, Восточной Сибири. Способны к пластическим деформациям, обладают высокой растворимостью и низкой водопроницаемостью. Прочность от 15 до 30 Мпа.

Соляные шахты часто из-за карста часто затопляются водой, глубокие пласты часто используют как подземные

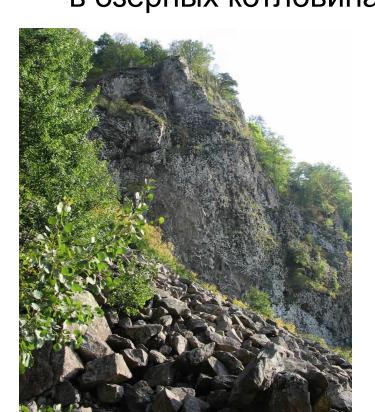
Класс II. Природные дисперсные грунты

Группа 1 – Несвязные грунты

Объединяет осадочные и вулканогенно-осадочные крупнообломочные и песчаные породы.

Характеризуется двумя особненностями:

- 1)Состоят из обломков горных пород
- 2)Связи между обломками очень слабые или отсутствуют


Обладают высокой пористостью, при преобладании крупных пор, высокая водопроницаемость, высокое внутреннее трение, слабо уплотняются при статических нагрузках и сильно – при динамических.

За редким исключением, хорошо выдерживают нагрузку сооружений в сухом и влажном состоянии.

Вид 1 – Крупнообломочные грунты

Состоят из обломков пород крупнее 2 мм полиминерального состава, которые составляют более 50%. Широко распространены в горно-складчатых областях, где слагают мощные толщи пролювиальных аллювиальных и гравитационных отложений (осыпи, обвалы), на щитах, в озерных котловинах.

- По размеру и окатанности подразделяются на :
- 1. Валунные и глыбовые (более 200мм составляют более 50%)
- 2. Галечниковые и щебнистые (более 10мм составляют более 50%)
- 3. Гравийные и дресвяные (крупнее 2мм более 50см).
- 4. Первые окатанные, вторые угловатые

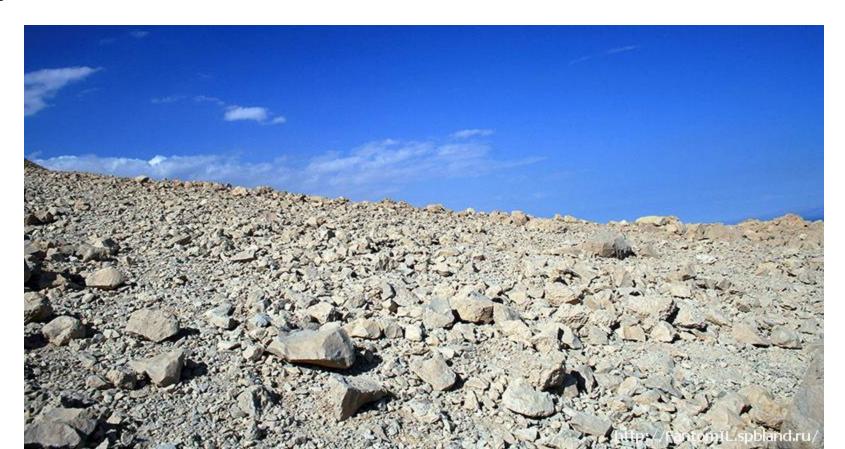
Важной характеристикой крупнообломочных пород является наличие или отсутствие песчано-глинистого заполнителя.

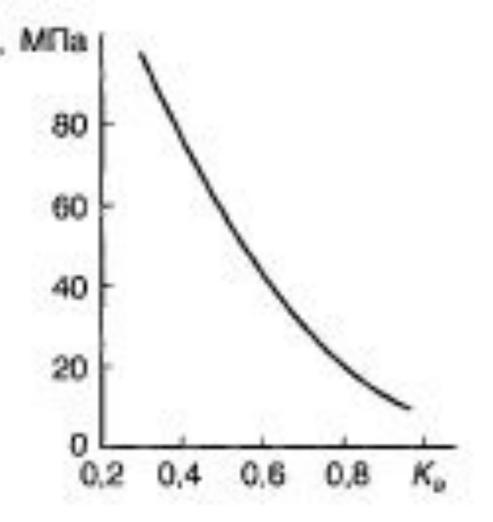
При его отсутствии крупнообломочные грунты обладают высокой водопроницаемостью, фильтрация носит турбулентный характер

Водопроницаемость грунтов с заполнителем определяется составом заполнителя – песчаным или глинистым

Петрографический состав крайне разнообразен, в окатанных породах преобладают магматические породы или кварциты. Крупнообломочные породы без заполнителя в любых природных условиях незасолены, с заполнителям в степи и полупустыне – часто засолены.

Естественная влажность изменяется от 1-2% - у грунтов без заполнителя до 30% - с песчано-глинистым заполнителем.


Характерна слоистость.


Форма обломков: аллювиальные и морские — уплощенные окатанные, ледниковые — плохо окатаны, элювиальные — неокатанные, цилиндрические.

- Плотность скелета 2,65-3,2 г/см3, пористость 25-40%, коэффициент фильтрации до 1000м/сут, наличие заполнителя резко его снижает.
- Грунты без заполнителя являются слабосжимаемыми, с заполнителем особенно с глинистым – сжимаемость увеличивается.

Деформационные свойства зависят от степени выветрелости обломков.

Прочность крупнообломочных грунтов выше чем у песчаных и глинистых, угол естественного откоса составляет 40^{0}

Зависимость деформации щебнисто-гравийных грунтов от коэффициента выветрелости

Устойчивость сдвигу грунтов зависит от количества крупнообломочного материала. Повышение прочности и неоднородности грунта ведет к повышению угла внутреннего трения.

Вид 2 – Песчаные несвязные грунты

Преобладают частицы размером 0,05-2мм, содержание глинистого материала менее 3%, в сухом состоянии — сыпучие, во влажном приобретают связность, пылеватые — обладают плывунными свойствами.

По инженерно-геологическим свойствам пески подразделяются на: гравелитистые, крупные, средние, мелкие, пылеватые, с растительными остатками. Песчаные породы на территории СНГ занимают 1850 тыс км2.(51% - занимают аллювиальные пески, 24%-водно-ледниковые, 11% - эоловые, 6,5 % — морские, 4% - элювиальные, 1% - озерные).

Гравелитистые и крупнозернистые пески преобладают в горных районах и на щитах, в платформенных областях – преобладают мелкозернистые пески.

Минеральный состав песков: 70% - кварц, 8% - полевые шпаты, 7% - кальцит, 3% - доломиты.

- В большинстве пески незасолены, но в пустынных областях морские пески имеют до нескольких процентов солей.
- Пески практически всегда в разной степени ожелезнены.
 Могут содержать растительные остатки (если их более 10% - пески заторфованные)
- Емкость обмена 1-2 ммоль/100г песков, влажность изменяется от 1-2% до 20-30%

Пески бывают однородные и неоднородные (с линзами торфов, глин, галечников). Часто характеризуются слоистым сложением (косая – аллювиальные, горизонтальная – морская, однородные - элювиальные).

Плотность твердых частиц – 2,60-2,65 г/см³.

Плотность — 1,45-1,85 г/см 3 .

Пористость 25-55%, чаще всего 35-45%, размеры пор определяются крупностью песков.

Характеризуются высокой водопроницаемостью, у пылеватых песков – 1 м/сут, гравелитистые – 100м/сут. Высота капиллярного поднятия от нескольких см – в крупнозернистых до 1,5м – в супесях. Водоотдача – высокая, в гравелитистых песках составляет – 0,25-0,30.

Пески слабоуплотняются под действием статической нагрузки и сильно – при виброуплотнении. Высокое сопротивление сдвигу.

Неблагоприятные свойства – склонность к суффозии и плывунности, что приводит к вывалам пород в открытых выработках.

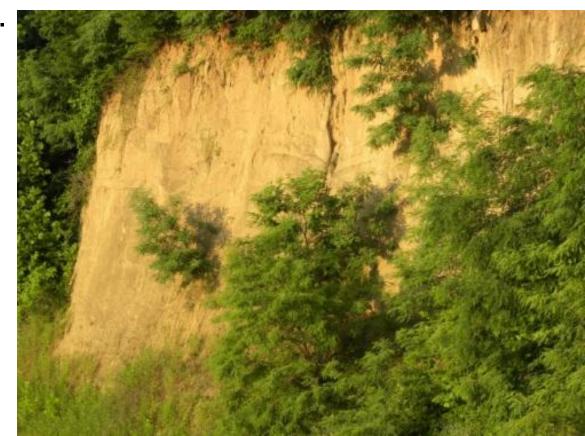
При фильтрации через пески природных вод в них оседают минеральные вещества, что ведет к их цементации и приводит в конечном счете приводит к эволюции песков в сцементированные скальные и полускальные породы.

Группа 2 – Связные грунты

Среди них выделяют минеральные (глины и лессы), органо-минеральные (илы и заторфованные грунты) и

органические (торфы).

Резко изменяется прочность в зависимости от содержания воды, в сухом состоянии прочные, во влажном – прочность резко снижается, при очень высокой переходит в текучее состояние. Пористость высокая, но при этом водопроницаемость низкая.


Пылеватые (лессовые) грунты — лессы и лессовидные грунты — континентальные породы различного происхождения, представлены мелкопесчанистыми частицами размером 0.1-0,05мм и пылеватыми 0,01-0,05мм. Обычно макропористые, карбонатные и просадочные.

- Преобладают в умеренных широтах, в тропиках и субтропиках не встречаются. Занимают 13млн. км2, в странах СНГ - 3 млн. км2, составляют 14% площади.
- Мощность лессов составляет от нескольких см до сотни метров. Максимальная в Предкавказье.

 По гранулометрическому составу выделяют лессы, лессовидные пески, лессовидные суглинки и

лессовидные глины.

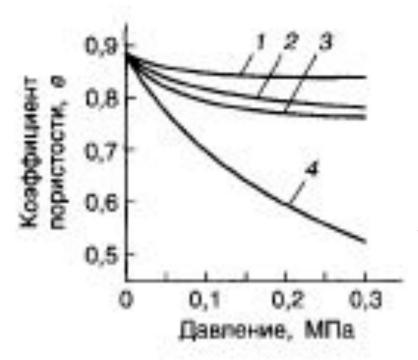
По минеральному составу в составе лессов преобладают кварц и полевые шпаты, приблизительно в равных количествах, до 25% составляют дисперсные минералы – каолинит, монтморилонит, гидрослюды.

Содержание органического вещества 1-2%, карбонатов от 0,1 до 20%. Кроме карбонатов лессы содержат легкорастворимые соединения от 0,02 до 2,6%, а в Средней Азии — до 5%. Среди обменных катионов преобладает кальций, естественная влажность 1-40%, высокая просадочность.

Строение лессовидных грунтов:

- 1. Однородность, отсутствие слоистости
- 2. Наличие погребенных почв, прослоев песка, вулканического песка
- 3. Наличие пустот и пор
- 4. Развитие горизонтов карбонатов, гипса, солей и конкреций
- 5. Столбчатая отдельность. Пористость от 35 до 60%.

Просадочность определяется количеством макропор (до 8%) и слабой связью между структурными элементами. Плотность твердых частиц составляет 2,60-2,75 г/см3, Плотность 1,33- 2,03г/см3, плотность скелета грунта — 1,12-1,79г/см3.


Пластичность невысокая – 4-10, у лессовидных глин –

20-30

Для лессовых пород характерна невысокая, водопрочность, водопроницаемость изменяется от 0.001 до 8 м/сут.

Прочность от 0,05 до 0,7 МПа, сильно уменьшается при увеличении влажности

Изменение сжимаемости грунтов при увеличении влажности грунтов: 1- 5%, 2-11%, 3- 16%, 4-30%

Глинистые грунты – тонкодисперсные образования, содержащие не менее 3% глинистых частиц, склонные к набуханию и пластичности при увлажнении.

Залегают в виде толстых слоев, толщ, линз, прослоев, конусов выноса.

По гранулометрическому составу среди них выделяют

супеси, суглинки и глины.

Минеральный состав зависит от генезиса пород: В элювии по гранитам – преобладает каолинит По магнезиально-железистым – монтмориллонит По метаморфическим породам – гидрослюды, хлорит Морские глины – сильно засолены

Емкость катионного обмена от 2-5 ммоль/100г у супесей до 120 ммоль/100г – у монтмориллонитовых глин.

Естественная влажность от 5-10 до 100 и более %.

Строение грунтов также зависит от генезиса

Морские – однородные Водно-ледниковые и ледниковые, аллювиальные, озерные – горизонтально-слоистые

Пористость изменяется в широких пределах от 40% до 90% у глин ячеистого строения.

Плотность твердых частиц — 2,50-2,85г/см3, плотность 1,25-1,40 г/см3.

Большая часть глин и суглинков являются к слабоводопроницаемым или абсолютно водонепроницаемыми.

При увлажнении набухают, при высушивании – наблюдается усадка Липкость достигает 5-6 H/cм².

Наиболее гидрофильны – тяжелые глины и суглинки, наименее гидрофильны – супеси.

Прочность изменяется от первых единиц МПа до сотых

долей МПа.

Органо-минеральные связные грунты — молодые отложения (илы в том числе сапропелевые и оторфованные)

1) Илы — молодые сильноувлажненные, неуплотненные органоминеральные образования, состоящие преимущественно из глинистых и пылеватых частиц с примесью песчаных частиц.

Это структурированные отложения водоемов почти не претерпевшие изменения в процессе диагенеза. Могут формироваться в озерах, в морях на шельфе, континентальном склоне и океанических впадинах. В песчаной и пылеватой фракции преобладает кварц, роговая обманка, полевые шпаты, глинистые частицы -

полиминеральный

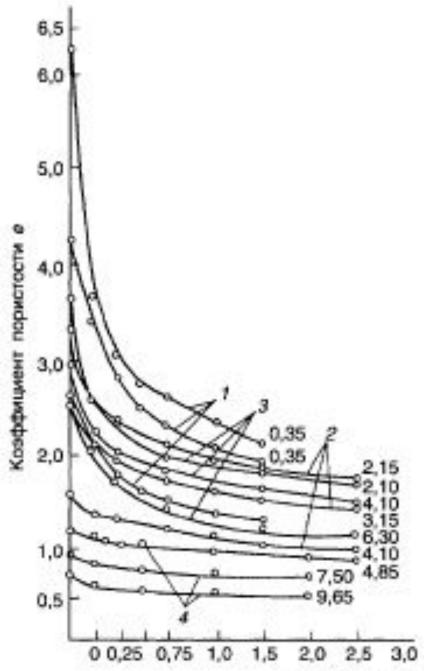
В составе органического вещества – остатки фауны и флоры, морские – содержат кремнистые и карбонатные раковины

Морские соли содержат много солей, реакция — слабощелочная — 7,8-8,3.

Естественна влажность от 50 до 200%.

Строение – рыхлое параллельное или косо-слоистые.

Плотность твердой фазы – 2,2-2,82 г/см3.


Плотность -1,17-2,02 г/см3.

Плотность скелета – 0,5- 1,60 г/см3.

Пористость — 40-90%

Коэффициент фильтрации — 10^{-6} — 10^{-8} .

Прочность илов - 0,001-0,005 МПа

При воздействии динамических нагрузках все илистые грунты разжижаются

Вертикальная нагрузка Р, 10 МПа

2) Сапропелевые грунты — молодые органоминеральные отложения озерных водоемов, содержащие более 10% органического вещества

Состав сапропелей: песок 6-13%, пыль-55-80%, глина — 15-30%

В составе песка и пыли –преобладает кварц, в составе глины – каолинит.

По содержанию органического вещества сапропели делят на — минеральные (< 30%), органо-минеральные (30-50%), минерально-органические (50-70%) и органические (>70%)

Влажность от 100 до 3 000%.

Имеют слоистое строение, четко видны растительные остатки Плотность твердой фазы 1,4-2,6 г/см³, плотность скелета грунта – 0,05-0,6г/см³. Пористость 72-98%.

Сапропели во влажном состоянии не набухают, при высыхании дают значительную усадку – 65-95%.

Очень пластичные, число пластичности от 120 до 850.

При динамической нагрузке разжижаются и начинают течь.

3) Заторфованные грунты - грунты с содержанием органического вещества 10-60%

По содержанию растительных остатков делятся на:

- 1) Слабозаторфованные 10-25%
- 2) Среднезаторфованные 25-40%
- 3) Сильнозаторфованные 40-60%

По свойствам занимают промежуточное положение между торфами и органомине ральными грунтами

Органические связные грунты (торфы) — молодые геологические породы не прошедшие диагенеза, образовавшиеся из болотной растительности в условиях избыточного увлажнения.

По внешнему виду волокнистые (при слабой степени разложения) образования или пластичные, черные (при высокой степени разложения)

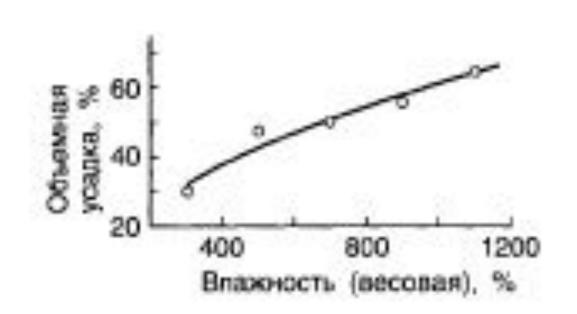
По степени разложения торфы делятся на:

- 1) Слаборазложившиеся 5-20%
- 2) Среднеразложившиеся 20-30%
- 3) Хорошоразложившиеся 30-40%
- 4) Сильноразложившиеся >40%

В России занимают более 300 тыс. км² – в Европейской части России и более 500 тыс. км² – в Восточной.

Естественная влажность грунтов от 500 до 2 000%. Низинные торфы обладают меньшей влажностью, чем

верховые.


Газообразная составляющая представлена аммиаком, метаном, сероводородом, водородом и углекислым газом. Структура грунта – органогенная.

Плотность твердых частиц грунта для верховых торфов составляет 1,4-1,53г/см3, низинных — 1,50-2,10. Плотность около 1см3, плотность скелета грунта — 0,07-0,2 г/см3 — у верховых торфов и 0,15-0,50 г/см3.

Пористость 90-95%

Усадка изменяется от 15 до 75%, но в естественном состоянии не набухают

Зависимость объемной усадки от первоначальной влажности

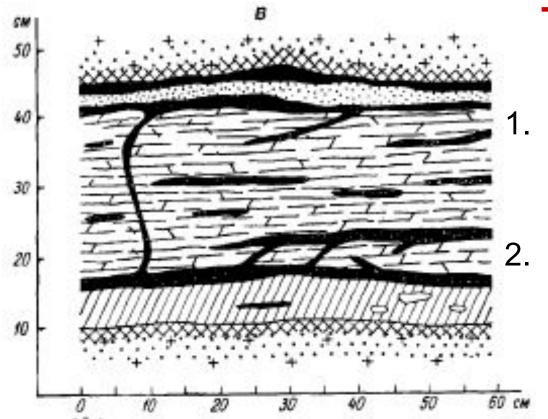
Водопроницаемость изменяется от 0,1 до 2м/сут, резко изменяется в зависимости от направления.

Отличительная черта – очень высокая сжимаемость торфов при вертикальных нагрузках

Класс III. Природные мерзлые грунты

Распространены в криозоне, содержат в своем составе лед включений, лед-цемент. При их описании не учитываются многие свойства. такие например как гранулометрический состав.

Группа 1 - Мерзлые скальные ледоминеральные грунты


Образуются при промезании скальных грунтов и содержат лед в трещинах от 1-3% до 10-15%.

Выделяют 5 типов льда:

а) Цементный – образовавшийся из воды, заполнивший трещину до промерзания грунта – среднее распучивание грунтов

- б) Инъекционный образовавшийся из воды, внедрившийся в трещину под напором сильное распучивание грунтов
- в) Сегрегационный образовавшийся из воды, внедрившийся в трещину без напором, под влиянием передвижения воды к фронту промерзания возможно местное распучивание грунтов
- г) Инфильтрационный образовавшийся из просочившейся воды из таликов распучивание грунтов невозможно
- д) Сублимационный образовавшийся из парообразной воды распучивание грунтов невозможно

Типы криогенных структур

- Трещинная граниты, гнейсы, роговика, диориты
- Трещино-жильная андезиты, базальты, сланцы

- 3. Пластово-трещинная доломиты, известняки, мергели
- 4. Пластово-трещинная-поровая песчаники, глинистые сланцы
- 5.Пластово-трещинная-карстовая известняки, гипсы, каменная соль

Свойства мерзлых грунтов определяются количеством трещин и типом льда.

В мерзлом состоянии лед увеличивает прочность трещиноватых грунтов в мерзлом состоянии. Но при этом усиливается проявление реологических свойств.

При оттаивании свойства мерзлых скальных грунтов ухудшаются тем сильнее, чем больше было первоначальное вспучивание.

Если исходная влажность скальных грунтов менее 1,5% - прочность при промерзании возрастает, в дальнейшем она не изменяется, при влажности боле 15% - при промерзании прочность грунтов уменьшается из-за вспучивания. При оттаивании мерзлые грунты дают

тепловую осадку

Группа 2 - Мерзлые дисперсные ледоминеральные-органоледяные грунты

Ледоминеральные мерзлые грунты –

грубообломочные, глинистые и песчаные грунты в которых содержание льда менее 40%

Характерны слоистые и сетчатые криогенные структуры, реже встречаются жильные льды

общие физические свойства (плотность, пористость и др.) такие же как и у не мерзлых грунтов.

Минерально-ледяные мерзлые грунты -

грубообломочные, глинистые и песчаные грунты в которых содержание льда более 40%. Прочность при низких температурах, выше прочности бетона

Сжимаемость возрастает с увеличением льдистости.

Характерны высокие значения тепловой просадки при оттаивании.

Очень сильно проявляются реологические свойства, при оттаивании могут переходить в текучее состояние, что значительно снижает их несущую способность

Являются очень сложными грунтами при инженерногеологических изысканиях.

Органоминеральные ледяные грунты – песчаноглинистые заторфованные мерзлые грунты и мерзлые сапропели.

Органольдистые грунты – мерзлые торфяники.

Их мощность чаще всего 1-2 м, реже до 15м.

Структура базально-льдистая или массивно-поровая.

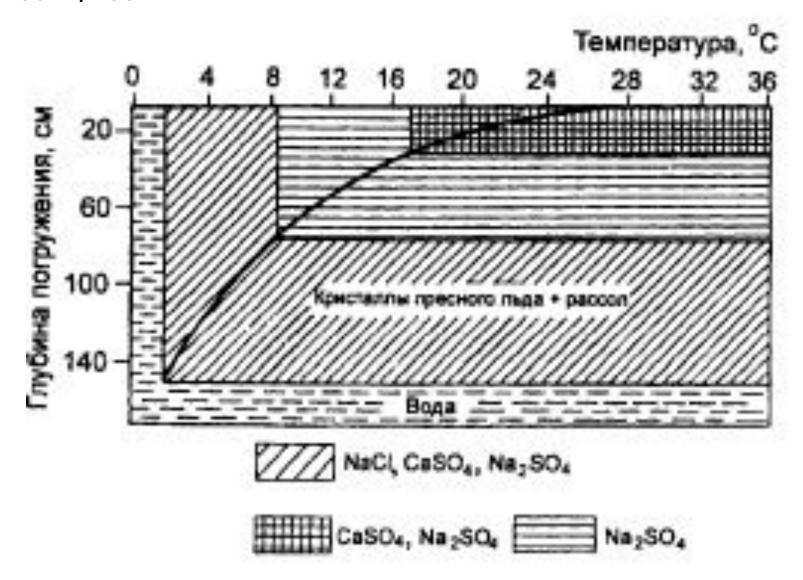
Характерна высокая льдистость и распучивание (бугры пучения могут достигать 7-8м).

Плотность около 1 г/см3, очень низкая теплопроводность,

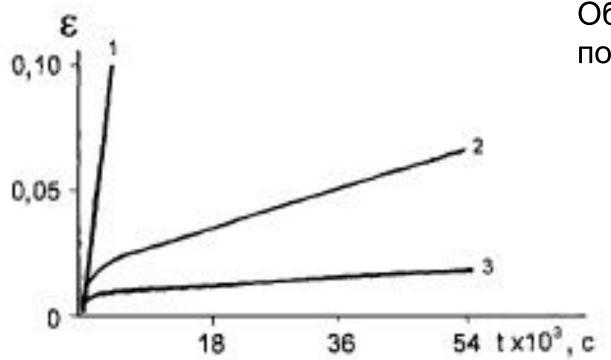
Реологические свойства проявляются очень сильно, характерна незатухающая ползучесть

Группа 2 - Мерзлые ледяные грунты

Представлены льдом с тем или иным количеством терригенного материала.


Наиболее часто –это ледники горные и материковые, мощностью до 900м – у горных ледняков, и до 4 700м – у

материковых.


Различают осадочные незасоленные и морские засоленные льды. Морские льды менее прочные из-за неоднородности.

Выделяют различные структуры льда: сплошная кристаллическая, игольчатая, слоистая зернистая или фирновая, мелкоагрегатная и чешуйчатая

Плотность от 0,5 до 0,9 г/см 3 , пористость изменяется от 1 до 40%.

Прочность 1,0-5,9 МПа, под нагрузкой вязкопластичен.

Обладает высокой ползучестью.

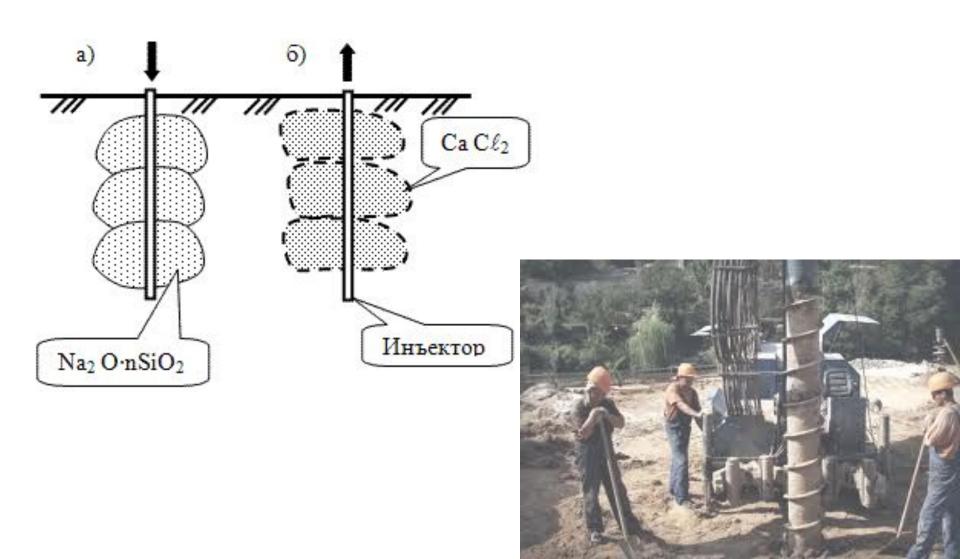
Царство- Техногенные (искуственные) грунты

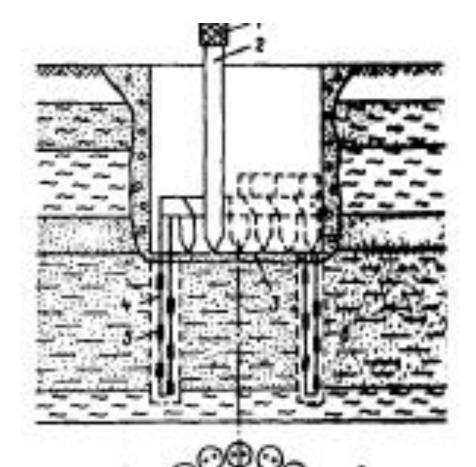
Включает широкий спектр антропогенно-преобразованных грунтов и антропогенные образования.

Часто используются в качестве оснований инженерных сооружений, особенно при нехватке природных

Класс IV. Скальные и полускальные техногенные (искусственные) грунты

- Природные скальные или дисперсные образования, измененные в естественном состоянии каким-либо физическим или физико-химическим воздействием чаще всего целесообразно для улучшения инженерногеологических свойств.

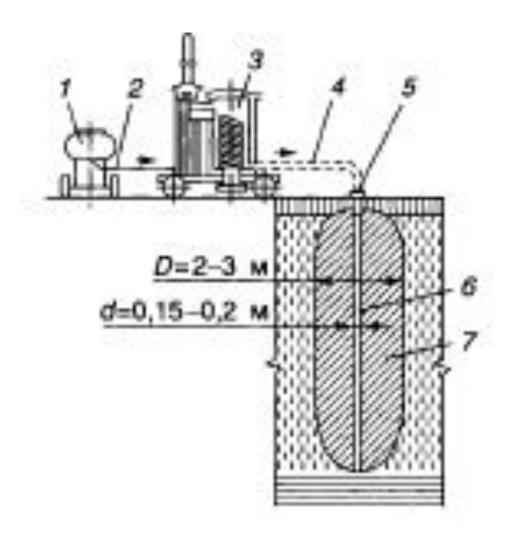

Скальные и полускальные инъекционно-закрепленные арунты – трещиноватые и закарстованные скальные породы для снижения фильтрационных свойств и увеличения несущей способности укрепленные нагнетанием раствора под давленим до 70 атм.


Способы

- 1) Наиболее частый цемент (не применим если грунт заболачивается агрессивными водами, особенно сульфатными)
- 2) Глинизация наиболее дешевый, применим для необводненных грунтов, не улучшает физических свойств, возможно суффозия
- 3) Битумизация устойчив к действию агрессивных вод, не вымывается, не применим для пород с тонкими трещинами

4) Силикатизация – очень надежный, но очень дорогой.

Иногда подобным способом закрепляют дисперсные грунты (цемент, битумы или силикатизация).



Скалиные и полускальные термически упрочненные грунты – обоженные грунты, при котором происходит дегидратация, плавление и спекание частиц.

Применяется для закрепления плывунных песков и лессовых просадочных пород

Схема электроплавления плывунов, T= 1500-1600°C

Лессы теряют просадочные свойства, не размокают даже при 2-х часовом замачивании и в 2-3 раза улучшаются физические свойства

Закрепление лессов нагнетанием горячего воздуха $T=600-1400^{0}C$

Скальные и полускальные техногенно ухудшенные грунты — побочные продукты хозяйственной деятельности человека.

Полускальные антропогенно образованные грунты

– солешлаки, золоцементные отходы, солеотвалы.

Класс V. Дисперсные техногенные (искусственные) грунты

Несвязанные техногенные грунты – включают в себя измененные грунты в естественном залегании, перемещенные переотложенные грунты, антропогенные образования.

- 1) Уплотненные грунты (механическое уплотнение, водопонижение, кольматация, оптимизация гранулометрическим составом)
- 2) Армирование внедрение каркаса, сеток, стержней и пластин

Техногенно измененные грунты – образуются как побочные продукты хозяйственной деятельности человека

- 1. Разуплотнение стенок карьеров
- 2. Обводнение грунтов
- 3. Засоление грунтов
- 4. Разлив нефтепродукт ов
- 5. Оттаивание мерзлых грунтов

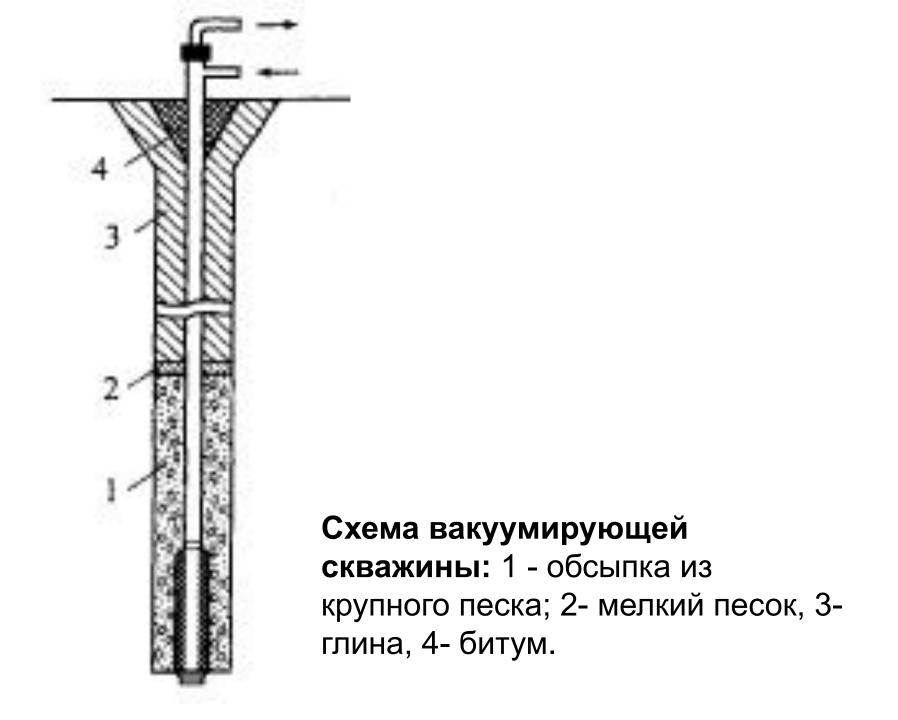
Техногенно переотложенные грунты

- 1) Насыпные (отвалы и искусственно возведенные насыпи)
- 2) Намывные (гидронамыв при строительстве плотин)

Антропогенно образованные грунты

- 1. Промышленные отходы
- 2. Шлаки черной металлургии побочный продукт выплавки чугуна и стали используется как строительный материал
- 3. Золы и шлаки тепловых электростанций минеральный остаток сжигания угла, нефти, горючих сланцев используются при изготовлении тяжелых бетонов и цементных растворов
- 4. Шламы продукты цветной металлургии суспензии

Связанные техногенные грунты


Среди них выделяют три группы

1. Техногенно измененные связанные грунты

Среди них выделяют

- а) инъекционно закрепленные несвязные грунты, например, глинизация песков для снижения их водопроницаемости и холодная битумизация песков (снижается фильтрация в 4-100 раз).
- б) осушение, например, вакуумное водопонижение по контуру для песков с высокими коэффициентами фильтрации и электроосматическое осушение при низких коэффициентах фильтрации

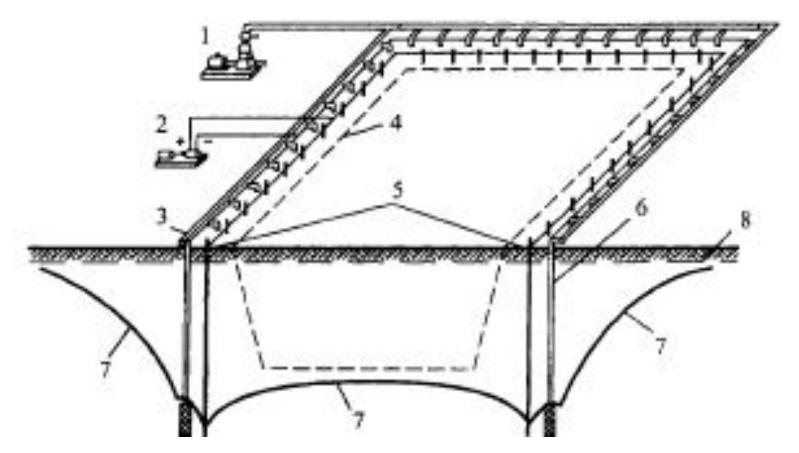
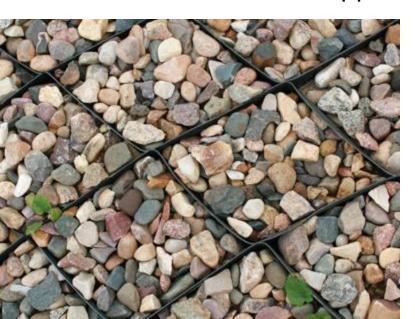
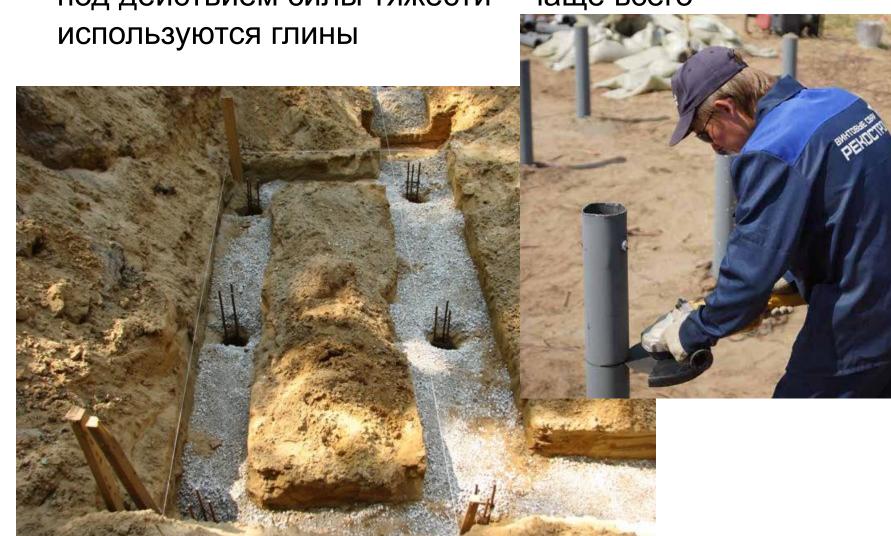



Схема электроосмотического осушения: 1 — насосная установка; 2- генератор; 3- водосбросный коллектор, 4- контур котлована; 5- трубы-аноды, 6- иглофильтры-катоды, 7- уровень грунтовых вод после осушения, 8- уровень грунтовых вод до осушения


- в) уплотненные грунты (уплотнение тяжелыми трамбовками для песков при степени влажности менее 0,7; подводными взрывами для лессовых грунтов при влажности 0,7-0,8; вытрамбование котловин, статической нагрузкой –отсыпкой, предварительной замочкой, гидровиброуплотнением)
- г) **армирование** (песчаные свая труба в которую постепенно засыпается песок, грунтовые сваи, известковые сваи для обводненных грунтов)

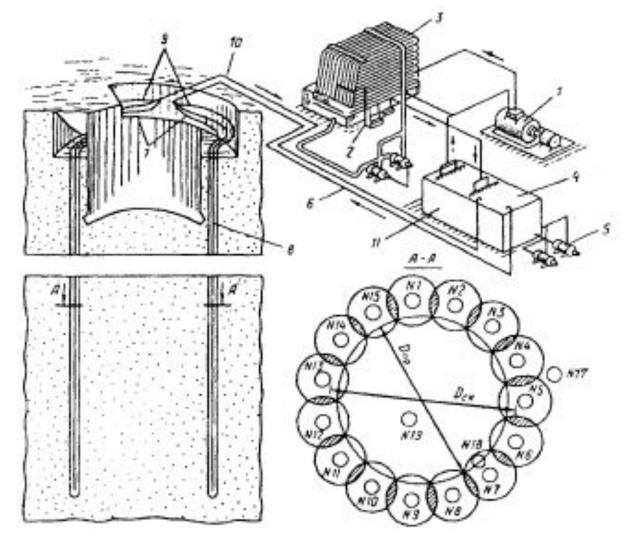
2. Техногенно переотложенные связанные грунты

(насыпные и намывные) — постепенно уплотняются под действием силы тяжести — чаще всего

3. Связанные антропогенно образованные грунты

- а) золы тепловых электростанций (преимущественно супеси)
- б) Шламы продукты металлургии (преимущественно глинистые)
- в) Твердые бытовые отходы (ТБО) свалки, большие проблемы их утилизации
- г) Культурные слои верхняя часть разрезов населенных пунктов (содержат предметы хозяйственной деятельности человека) в Москве их мощность более 20м

Класс V. Мерзлые техногенные (искусственные) грунты


1) Замораживание плывунов применяют при строительстве тоннелей, шахт и гидротехническом строительстве.

Замораживание проводят спомощью охладительных установок до -5 -10⁰C.

Недостатки метода – очень высокая стоимость, и недолговечность, размораживание происходит от 2-3 месяцев до одного года

2) Намораживание искусственных льдов (островов, насыпей) в арктических широтах, для повышения поверхности инженерных сооружений.

Схема замораживающей установки: 1- компрессор, 2- маслоотделитель, 3-конденсатор, 4- испаритель, 5-рассольные насосы, 6- рассолопровод, 7- распределитель, 8- заморажуваящая установка, 9-коллектор, 10- расолопровод; 11-водяные насосы