
Использование открытых водоисточников для тушения пожаров.

Практическое занятие.

Водоотдача водопроводных сетей для тушения пожаров зависит от типа сети (кольцевая или тупиковая), диаметра труб, напора воды в сети. Водоотдачу кольцевых водопроводных сетей ориентировочно определяют по формуле:

$$Q_{\rm\scriptscriptstyle B}^{\rm\scriptscriptstyle K} = (V_{\rm\scriptscriptstyle B} d_{\rm\scriptscriptstyle CETM})^2$$

где Q_B^{κ} - водоотдача кольцевой водопроводной сети, л/с; V_B —скорость движения воды по трубам, м/с (стр. 127 Справочник РТП, табл. 4.2); $d_{\text{сети}}$ — диаметр труб, дюйм.

Водоотдача тупиковых водопроводных сетей примерно на 0,5 меньше кольцевых.

Расход воды через пожарную колонку определяют по формуле:

$$Q_K = P\sqrt{H}$$

где Q_{κ} — расход воды через колонку, л/с; H — напор воды в сети (показание манометра), м; P — проводимость колонки (см. ниже).

Число открытых патрубков колонки	Среднее значение проводимости				
Один патрубок 66 мм	10.5				
77 mm.	16,6				
Два патрубка диаметром 66 мм	22,9				

Использование открытых водоисточников для тушения пожаров:

Допустимая высота всасывания воды, подаваемой на тушение, зависит от ее температуры:

Температура воды, °С	10	20	30	40	50	60
Максимальная высота	7.0	6.5	5.7	18	3 8	2.5
всасывания, м	7,0	0,5	3,7	4,0	3,6	2,3

Всасывающая линия должна состоять не более чем из трех-четырех рукавов длиной по 4 м. При этом высота всасывания воды не должна превышать 4...5 м.

Максимальное количество воды, подаваемой мотопомпами, установленными на водоисточники:

$$Q = \sqrt{H_{M.JI} / N_{P.M.JI} S}$$

где Q — подача воды от мотопомпы, л/с; $H_{\text{м.л}}$ — потери напора в магистральной рукавной линии, м, которые определяются по формуле; $N_{\text{р.м.л}}$ - число рукавов магистральной линии, шт.; S — сопротивление одного напорного рукава длиной 20 м.

Рукава	Диаметр рукава, мм					
	51	66	77	89	110	150
Прорезиненные	0,15	0,035	0,015	0,004	0,002	0,00046
Непрорезиненные	0,3	0,077	0,03	-	-	-

Пример. Определить количество воды, подаваемой мотопомпой МП-1600 в водобак автоцистерны, установленной на расстоянии 200 м от водоисточника, при подъеме местности 15 м и магистральной линии из прорезиненных рукавов диаметром 66 мм.

Решение. Напор на насосе мотопомпы принимаем равным 90 м, а свободный напор с учетом высоты автоцистерны — 3 м. Тогда

$$H_{M.\Pi} = H_H - H_{CB} - Z_M = 90 - 3 - 15 = 72 M.$$

$$Q = \sqrt{\frac{H_{M.J}}{N_{P.M.J}}} = \sqrt{\frac{72}{10 \times 0.035}} \approx 14\pi/c$$

Гидроэлеваторными системами можно также забирать воду с глубины до 20 м или по горизонтали до 100 м. В качестве струйных насосов в этих системах используют гидроэлеваторы Г-600 и Г-600А.

Объем одного рукава длиной 20 м в зависимости от его диаметра приведен ниже:

Диаметр рукава,	51	66	77	89	110	150
MM.						
Объем рукава, л	40	70	90	120	190	350

Расчет гидроэлеваторной системы:

Требуемое количество воды для запуска гидроэлеваторной системы определяют по формуле:

$$V_{CUCT} = N_P V_P K$$

где V $_{\text{сист}}$ — количество воды для запуска гидроэлеваторной системы, л; Np —число рукавов в гидроэлеваторной системе, шт.; V р — объем одного рукава длиной 20 м; К — коэффициент, который зависит от числа гидроэлеваторов в системе, работающей от одной пожарной машины, и равен: для одногидроэлеваторной системы — 2, для двухгидроэлеваторной — 1,5.

Сравните полученный результат с запасом воды, находящейся в пожарной автоцистерне, и выявите возможность запуска системы в работу.

Расход воды гидроэлеваторной системы определяют по формуле:

$$\mathbf{Q}_{\text{сист}} = \mathbf{N}_{\text{r}} (\mathbf{Q}_{1} + \mathbf{Q}_{2}),$$

где N_{Γ} — число гидроэлеваторов в системе, шт.; Q_1 — рабочий расход воды одного гидроэлеватора, л/с; Q_2 — подача одного гидроэлеватора, л/с.

Коэффициент использования насоса можно определить по формуле:

$$\mathbf{H} = \mathbf{Q}_{\mathsf{CHCT}} / \mathbf{Q}_{\mathsf{H}}$$

 ${\sf C}_{\sf C}$ и ${\sf Q}_{\sf H}$ —соответственно расход воды гидроэлеваторной системы в подача насоса пожарной машины, л/с.

Коэффициент **И** должен быть менее единицы. Наиболее устойчивая совместная работа гидроэлеваторной системы и насоса при $\mathbf{И} = 0,65...0,7$.

Условную высоту подъема воды определяют по формуле:

$$Z_{yCJ} = Z_{\Phi} + N_{P} h_{P}$$

где N_p — число рукавов, шт.; h_p — потери напора в одном рукаве, м.

Стр.134, Справочник РТП пример + рисунок!