Эконометрика

Краткий курс лекций и порядок выполнения практик (для заочной формы обучения)

Преподаватель к.т.н., доцент УРАЗБАХТИНА Анжелика Юрьевна

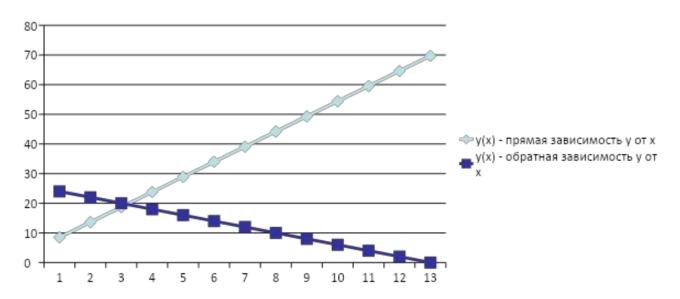
Общие понятия эконометрики и эконометрических моделей

Эконометрика изучает конкретные количественные взаимосвязи экономических (производственных) объектов и процессов с помощью математических и статистических методов и моделей [1].

Взаимосвязи изучаются для выработки рекомендаций по управлению экономическими (производственными) системами/процессами или для выполнения прогнозов о состоянии этих систем/процессов в будущем.

- В любой эконометрической (регрессионной) модели участвуют переменные:
- х объясняющие, независимые, экзогенные переменные или факторные признаки. Это могут быть величины: погодные условия, цена, зарплата, процентные ставки, и пр. Может быть одна переменная х тогда эконометрическая модель называется парной моделью регрессии; наличие х1, х2 и т.д. указывает на необходимость определения множественной модели регрессии. Если в качестве «х» выступает переменная «время», то ее обычно обозначают уже не как «х», а как «t».
- у(х) или у(х1, х2, ...) результирующая, зависимая от х, эндогенная переменная или результативный признак. Это может быть: урожайность (зависит от погодных условий), уровень продаж (зависит от цены товара), доход по вкладу (зависит от процентных ставок), траты на товары не первой необходимости (зависит от зарплаты) и т.д. у(t) называется временным рядом. У временных рядов есть свойства, которые влияют на порядок формирования эконометрической модели временного ряда.

• Существуют также эконометрические модели, состоящие более чем из одного уравнения, их называют системами эконометрических уравнений.


• Мы их рассмотрим позже.

Линейная парная (эконометрическая) модель регрессии

- Регрессионный анализ (РА) основной метод эконометрики.
- Основная задача РА заключается в исследовании зависимости результата работы некоторой системы **y** от различных факторов **x** (и/или **t**), и отображения этой зависимости в виде математической функции **y=f(x)** или **y=f(t)**.
- Парная модель регрессии это зависимость между парой переменных **у** и **х**.
- Линейная парная модель регрессии это использование линейной математической функции y=f(x)=a+b*x или y=f(t)=a+b*t

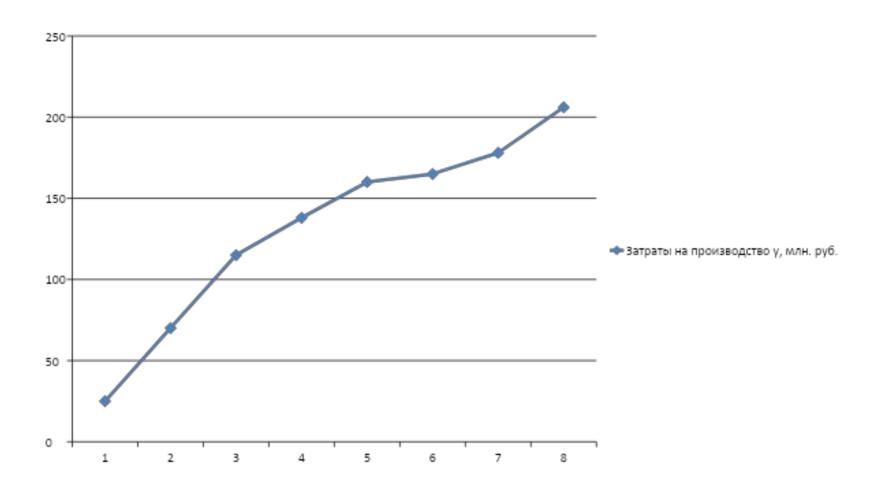
Пример регрессионной линейной эконометрической модели

Запись модели в виде формулы у(**x**)=a+b•x

Прямая зависимость: когда **х** возрастает, возрастает и **у**; или **х** убывает – убывает и **у**; коэффициент корреляции положительный; тенденция **у** (тренд) к возрастанию.

Обратная зависимость: когда **х** возрастает, **у** - убывает ; или **х** убывает – **у** возрастает; коэффициент корреляции отрицательный; тенденция **у** (тренд) к убыванию.

Практика 1. Определение парной линейной модели регрессии, ее оценка и выполнение прогноза


• 1. Пусть даны результаты статистических исследований

2	
Затраты на	
производство у,	Выпуск продукции х,
млн. руб.	тыс. ед.
38	1
169	4,1
70	2
123	3,5
100	3
197	4,4
150	4
215	5

• 2. Сортировать всю заданную таблицу по возрастанию **х**.

Затраты на производство у,	Выпуск продукции х, тыс.
млн. руб.	ед.
38	1
70	2
100	3
123	3,5
150	4
169	4,1
197	4,4
215	5

3. Построить график **у** (убедиться, что график - почти прямая линия, только тогда правильно использовать ЛИНЕЙНУЮ эконометрическую модель **у**=**a**+**b*****x**)

4. Определить степень зависимости **у** от **х** (оценить тесноту линейной связи) с помощью коэффициента корреляции **г**у,х.

Коэффициент парной линейной корреляции показывает силу связи между **у** и **х**.

Для нахождения этого коэффициента используем функцию MS Excel = КОРРЕЛ (все **у**; все **х**).

Если у вас установлен Open Office, то используйте функцию CORREL

	А	D	L L	U		
		Затраты на производство у,	Выпуск продукции х, тыс.			
			AND THE SECOND S			
1		млн. руб.	ед.			
2	1	38	1			
3	2	70	2			
4	3	100	3			
5	4	123	3,5			
6	5	150	4			
7	6	169	4,1			
8	7	197	4,4			
9	8	215	5			
10		^				
11	Коэс	ффициент ко	орреляции ґ	у,х	=КОРРЕЛ(В2:	B9;C2:C9)
12						

Для качественной оценки коэффициента корреляции применяются различные шкалы, наиболее часто — шкала Чеддока. В зависимости от значения коэффициента корреляции связь может иметь одну из оценок:

7	6	169	4,1				
8	7	197	4,4				
9	8	215	5				
10	Сумма						
11	Среднее						
12			7		Комментарии:		
13	Коэффи	циент корр	еляции ґ у,х	0,98	Весьма высокая зави	ісимость между у и	X
14					Зависимость прямая		
15					Тенденция у к возра	станию	

• Модель определять целесообразно при Iry,xI>0,5.

Так как оценка тесноты связи с помощью коэффициента корреляции проводится, как правило, на основе более или менее ограниченной информации об изучаемом явлении, то возникает вопрос: насколько правомерно наше заключение по выборочным данным о наличии корреляционной связи в той генеральной совокупности, из которой была извлечена выборка?

В связи с этим и возникает необходимость оценки существенности (значимости) линейного коэффициента корреляции, дающая возможность распространить выводы по результатам выборки на генеральную совокупность. В зависимости от объема выборочной совокупности предлагаются различные методы оценки существенности линейного коэффициента корреляции.

Оценка значимости коэффициента корреляции при малых объемах выборки выполняется с использованием *t*-критерия Стьюдента. При этом фактическое (наблюдаемое) значение этого критерия определяется по формуле

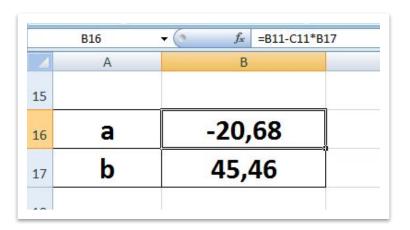
$$t_{\text{набл}} = \sqrt{\frac{r_{y,x}^2}{1 - r_{y,x}^2}} (n-2).$$

Значения *t*-критерия Стьюдента (двуст при уровнях значимости 0,10; 0,05

Число		α		Число	
степеней свободы	0,10	0,05	0,01	степеней свободы	0
1	6,3138	12,706	63,657	18	1,7
2	2,9200	4,3027	9,9248	19	1,7
3	2,3534	3,1825	5,8409	20	1,7
4	2,1318	2,7764	4,6041	21	1,7
5	2,0150	2,5706	4,0321	22	1,7
6	1,9432	2,4469	3,7074	23	1,7
7	1,8946	2,3646	3,4995	24	1,7

	СУММ	▼ (X ✓ f _x =ЛИНЕЙН(В2	2:B9;C2:C9)		
A	Α	В	С	D	Е
8	7	197	4,4		
9	8	215	5		
10	Сумма				
11	Среднее				
12					3
13	Коэффи	іциент корре	ляции ґ у,	X	0,98
	Коэффи	іциент корре	ляции ґ у,	X	0,98
13	Коэффи	іциент корре	ляции ґ у,	X	0,98
13 14	Коэффи а	іциент корре	ляции ґ у,	X	0,98

15	
16 a	
₁₇ b	45,46
10	


- **5.** Приступаем к нахождению неизвестных коэффициентов эконометрической модели:
- Сначала найдем **b**. Используем функцию =ЛИНЕЙН(все **y**; все **x**).

• Если у вас Open Office используйте LINEST

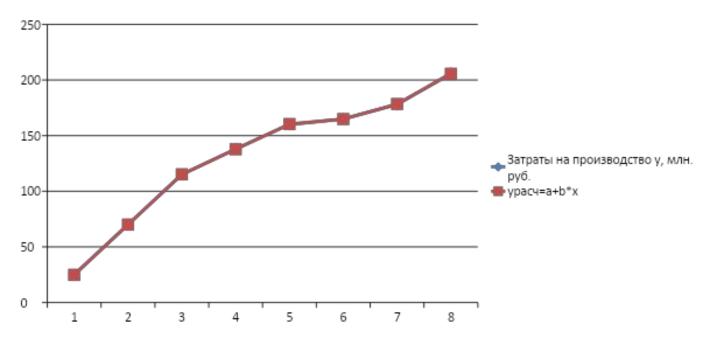
- Теперь найдем **a**. Сначала найдем суммы **y** и **x**.
- Найдем среднее х (хср) и среднее у (уср)

	Затраты на производство у, млн. руб.	Выпуск продукции х, тыс. ед.
1	38	1
2	70	2
3	100	3
4	123	3,5
5	150	4
6	169	4,1
7	197	4,4
8	215	5
Сумма	1062	27
Среднее	132,75	3,375

• **a**=**y**cp-**x**cp***b**

	A	В	С
5	4	123	3,5
6	5	150	4
7	6	169	4,1
8	7	197	4,4
9	8	215	5
10	Сумма	1062	27
11	Среднее	132,75	3,375
12			
_			
13	Коэффиц	иент корре	еляции ґ у,
	Коэффиц	иент корре	еляции ґ у,
13 14 15	Коэффиц	иент корре	еляции ґ у,
14		иент корре 311-С11*В17	T

• 6. Вычислим значения в столбце урасч по формуле

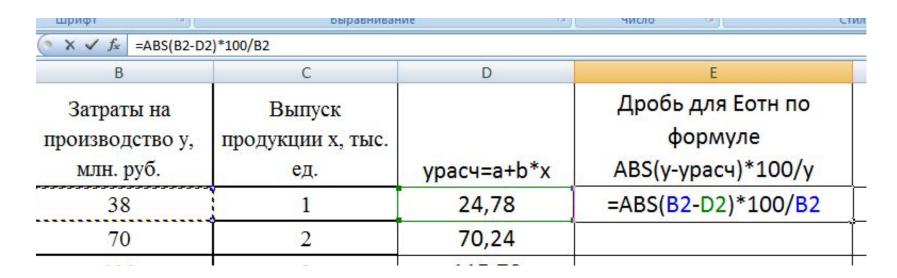

модели *a+b*x*

• Найдем сумму урасч

В	С	D
ты на одство у,	Выпуск продукции х, тыс.	
руб.	ед.	урасч=а+b*x
8	=	\$B\$16+\$B\$17*C
0	2	3

	Затраты на	D	
	производство у, млн. руб.	Выпуск продукции х, тыс. ед.	урасч=а+b*x
1	38	1	24,78
2	70	2	70,24
3	100	3	115,70
4	123	3,5	138,43
5	150	4	161,16
6	169	4,1	165,71
7	197	4,4	179,35
8	215	5	206,63
Сумма	1062	27	1062
Средне			
е	132,75	3,375	132,75

- **7.** Построим на одном поле графики **у** и **у**расч. Проведем первичную проверку качества модели:
- 1) *сумма у* должна быть равна или очень близка к значению *суммы у*расч
- 2) график **у** и график **у**расч должны или совпадать (идеальная модель), или быть близки друг у к другу (чем больше совпадений/пересечений графиков тем лучше модель)


8. Количественная характеристика модели по значению *Е*отн – средней относительной ошибке аппроксимации:

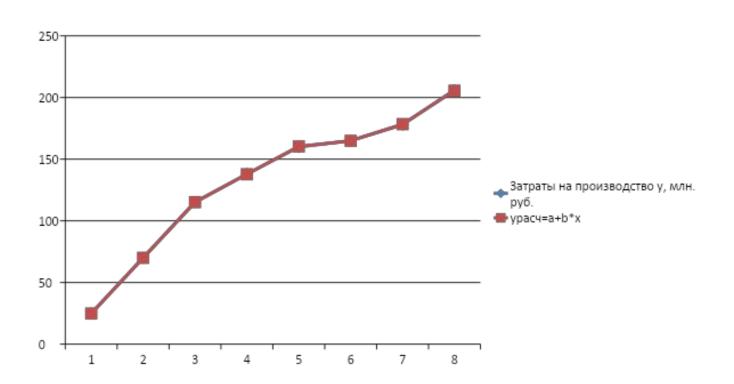
$$E_{\text{OTH}} = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{y_i} \cdot 100\%$$

Чем меньше рассеяние эмпирических точек вокруг теоретической линии регрессии, тем меньше средняя ошибка аппроксимации; $E_{\text{отн}} < 7\%$ свидетельствует о хорошем качестве модели.

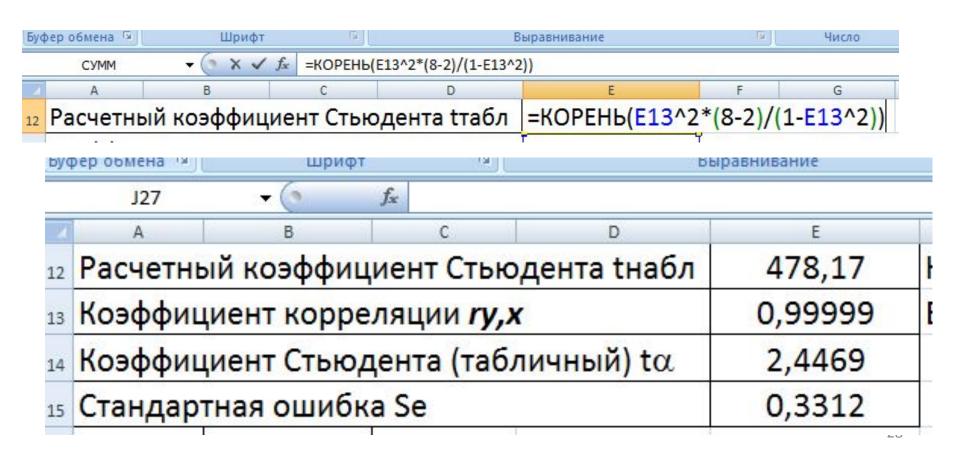
После того как уравнение регрессии построено, выполняется проверка значимости построенного уравнения в целом и отдельных параметров.

• Так как Еотн состоит из среднего от суммы дробей, эти дроби необходимо вычислить

	Затраты на производство у, млн. руб.	Выпуск продукции х, тыс. ед.	урасч=а+b*х	Дробь для Еотн по формуле ABS(y-ypacч)*100/y	
1	38	1	24,78	34,79	
2	70	2	70,24	0,34	
3	100	3	115,70	15,70	
4	123	3,5	138,43	12,55	
5	150	4	161,16	7,44	
6	169	4,1	165,71	1,95	
7	197	4,4	179,35	8,96	
8	215	5	206,63	3,90	
Сумма	1062	27	1062	85,63	
Средне е	132,75	3,375	132,75	10,70	<- Еотн


- Средняя ошибка аппроксимации в данном примере 10,7%; что существенно больше допустимого значения в 7%.
- Делаем вывод о плохом качестве модели. Расчеты при таком выводе заканчивают.
- Плохое качество модели может быть при:
- 1) не правильном выборе формулы модели;
- 2) не корректных исходных данных **х** или **у**;
- 3) не достаточном количестве наблюдений (для хорошей модели необходимо от 14 до 50 наблюдений)

• Изменим исходные данные. Лист EXCEL автоматически пересчитает все данные и построит новые графики.


	Затраты на производство у, млн. руб.	Выпуск продукции х, тыс. ед.	урасч=а+b*х	Дробь для Еотн по формуле ABS(y-ypacч)*100/y	
1	25	1	24,85	0,58	
2	70	2	70,02	0,03	
3	115	3	115,19	0,16	
4	138	3,5	137,77	0,17	
5	160	4	160,35	0,22	
6	165	4,1	164,87	0,08	
7	178	4,4	178,42	0,24	
8	206	5	205,52	0,23	
Сумма	1057	27	1057	1,71	
Средне					
е	132,125	3,375	132,125	0,21	<- Еотн

Коэфф		
ициент		
коррел		
яции		
ry,x		1,00

а	-20,31
b	45,17

Вычислим коэффициент Стьюдента tнабл для вновь вычисленного коэффициента корреляции; получилось tнабл>tтабл, следовательно, значение коэффициента корреляции признаем значимым, и все выводы, основанные на нем – правильными.

- Эконометрическая линейная модель по новым данным практически идеальна (погрешность Еотн = 0,21%), графики визуально совпадают. Такую модель можно использовать для прогнозирования.
- 9. Прогнозирование. Сначала определяем точку прогноза. Пусть требуется определить затраты на производство упрогн, если увеличить выпуск продукции до хпрогн=6.

	B19	▼ (
4	А	В				
16	a	-20,31				
17	b	45,17				
18	хпрогн	6				
19	упрогн	250,687678				

Данный прогноз называется *точечным*. Значение независимой переменной $x_{\text{прогн}}$ не должно значительно отличаться от значений, входящих в выборку, по которой вычислено уравнение регрессии.

Вероятность реализации точечного прогноза теоретически равна нулю. Поэтому рассчитывается средняя ошибка, или доверительный интервал, прогноза с достаточно большой надежностью.

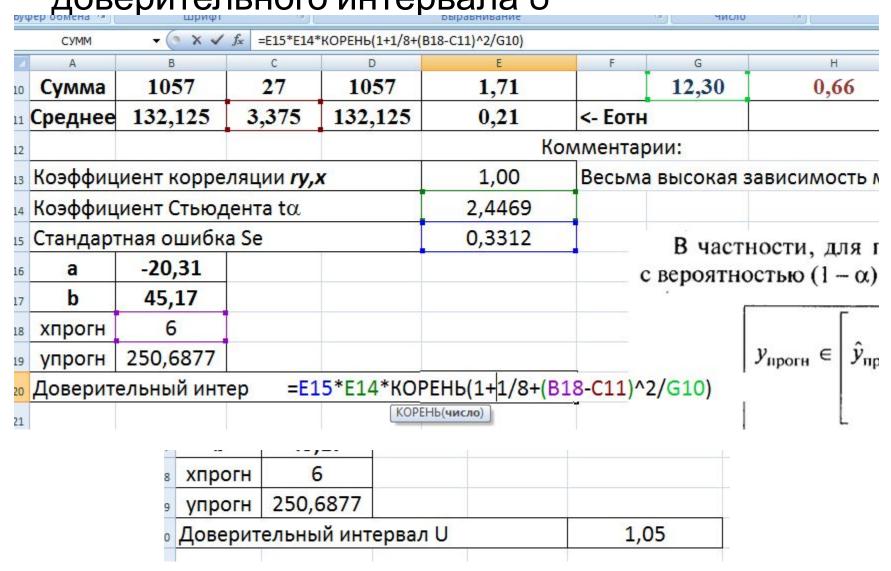
Доверительные интервалы зависят от следующих параметров:

- стандартная ошибка
- удаление $x_{\text{прогн}}$ от своего среднего значения \bar{x}
- количество наблюдений n;
- уровень значимости прогноза α.

В частности, для прогноза будущие значения $y_{\text{прогн}}$ с вероятностью $(1-\alpha)$ попадут в доверительный интервал

$$y_{\text{прогн}} \in \left[\hat{y}_{\text{прогн}} - S_e t_{\alpha} \sqrt{1 + \frac{1}{n} + \frac{(x_{\text{прогн}} - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}\right].$$

- 10. Вычисление доверительного интервала
- 10.1. Вычислить столбец значений (*x-х*ср)^2 и найти сумму этих значений
- 10.2. Определить по таблице (число степеней свободы для парной модели n-2; $\alpha = 0,05$) значение коэффициента Стьюдента t_{α}
- 10.3. Вычислить столбец ошибок в квадрате $e^2 = (y pac + y)^2$


	Затраты на производство у, млн. руб.	Выпуск продукции х, тыс. ед.	урасч=a+b* х	Дробь для Еотн по формуле ABS(y-ypacч)*100/ y	(x-xcp)^2	e^2=(y-урасч)^2
1	25	1	24,85	0,58	5,64	0,02
2	70	2	70,02	0,03	1,89	0,00
3	115	3	115,19	0,16	0,14	0,04
4	138	3,5	137,77	0,17	0,02	0,05
5	160	4	160,35	0,22	0,39	0,13
6	165	4,1	164,87	0,08	0,53	0,02
7	178	4,4	178,42	0,24	1,05	0,18
8	206	5	205,52	0,23	2,64	0,23
Сумм						
а	1057	27	1057	1,71	12,30	0,66

10.4. Вычислить стандартную ошибку Se Для модели парной регрессии

$$S_e = \sqrt{\frac{1}{n-2}\sum_{i=1}^n e_i^2}.$$

	тиолици	THURSE PURE		H**	ar painmer
	E15	▼ (f _x)	=КОРЕНЬ(Н10/(8-2))		
4	А	В	С	D	E
14 Коэффициент Стьюдента tα			2,4469		
15	стандартная ошибка Se			0,3312	

• Теперь имеются все данные для вычисления доверительного интервала U

Результат практики 1:

- Определили линейную парную эконометрическую модель
- урасч=-20,31+45,17; модель хорошего качества с относительной средней погрешностью в 0,21%;
- По модели выполнен прогноз: при увеличении **х**прогн до 6; **у**прогн увеличится до 250,69±1,05