

Л£КЦИЯ № 7-9

Дифференциальные уравнения высших порядков. Уравнения, допускающие понижение порядка. Линейные дифференциальные уравнения, однородные и неоднородные

Дифференциальным уравнением n-го порядка называется уравнения $F(x,y,y',y'',\mathbb{N}_{+},y^{(n)})=0$

или, если его можно разделить относительно старшей производной

$$y^{(n)} = f(x, y, y', y'', X, y^{(n-1)})$$

Решением уравнения n-го порядка является всякая n раз дифференцируемая функция y = y(x), которая обращает это уравнение в тождество.

Задача Коши для уравнения n-го порядка состоит в том, чтобы найти такое решение, которое удовлетворяет условиям $y = y_0, y' = y'_0, \mathbb{N}$ $y^{(n-1)} = y^{(n-1)}_0$ при $x = x_0$, где $x_0, y_0, y'_0, \mathbb{N}$, $y_0^{(n-1)}$ - заданные числа, которые называются начальными функциями или начальными условиями.

Общим решением дифференциального уравнения n-го порядка называется функция $y = \varphi(x, C_1, C_2, \mathbb{Z} \ C_n)$, зависящая от n произвольных постоянных $C_1, C_2, \mathbb{Z} \ C_n$ и такая, что:

- 1) она удовлетворяет уравнение при любых значениях постоянных C_1, C_2, \mathbb{Z} C_n
- 2) при заданных начальных условиях

$$y_{x=x_0} = y_0$$
 , $y'_{x=x_0} = y'_0$, ..., $y^{(n-1)} = y_0^{(n-1)}$

постоянные C_1, C_2, \mathbb{Z} C_n можно подобрать так, что функция $y = \varphi(x, C_1 \mathbb{Z} \ C_n)$ будет удовлетворять этим условиям.

Дифференциальные уравнения, допускающие понижение порядка

Простейшими уравнением n-го порядка, допускающие понижение порядка является уравнение вида: $v^{(n)} = f(x)$

Решение такого уравнения находится n-кратным интегрированием, а именно:

 $y = \iint \mathbb{X} \int f(x)dx + \frac{C_1 x^{n-1}}{(n-1)!} + \frac{C_2 x^{n-2}}{(n-2)!} + \mathbb{X} + C_{n-1} x + C_n$

<u>Пример.</u> Найти общее решение уравнения: y''' = 6x - 5

<u>Решение.</u> Интегрируя один раз получим:

$$y'' = 3x^2 - 5x + C_1$$

Далее получим:

$$y' = x^3 - \frac{5x^2}{2} + C_1 x + C_2$$

Окончательно:

$$y = \frac{x^4}{4} - \frac{5x^3}{6} + \frac{C_1x^2}{2} + C_2x + C_3$$

Это и есть общее решение уравнения.

Уравнение вида

$$y'' = f(x, y')$$

не содержит явным образом искомой функции.

Для решения этого уравнения можно понизить порядок. Обозначим

$$y' = p$$
 тогда $y'' = p'$

Подставим эти выражения в исходное уравнение получим уравнение первого порядка p' = f(x,p)

Проинтегрировав это уравнение получим:

 $p = p(x_1, C_1)$ Затем из формулыy' = p получим общий интеграл

$$y = \int p(x_1, C_1) dx + C_2$$

Пример. Решить дифференциальное уравнение

$$y'' - \frac{y'}{1+x} = 0$$

Решение. Подстановка y' = p, y'' = p'.

Тогда из данного уравнения второго порядка получим уравнение первого порядка с разделяющимися переменными

$$rac{dp}{dx} = rac{p}{1+x}$$
 или $rac{dp}{p} = rac{dx}{1+x}$ Откуда $\ln p = \ln(1+x) + \ln C_1$ тогда $p = C_1(1+x)$ Так как $p = y' = rac{dy}{dx}$, то $y' = C_1(1+x)$

Интегрируя последнее уравнение , получаем общее решение исходного уравнения:

$$y = C_1 \int (1+x)dx = C_1 \left(x + \frac{x^2}{2}\right) + C_2$$

Уравнение вида:
$$y'' = f(y, y')$$

не содержит явным образом независимую переменную х.

Для его решения снова $y' = \frac{dy}{dx} = p$, но теперь мы будем считать р функцией от у. Тогда $\frac{d^2y}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$

 $y'' = \frac{d^2y}{dx^2} = \frac{dp}{dx} = \frac{dp}{dy}\frac{dy}{dx} = p\frac{dp}{dy}$

В результате получим уравнение первого порядка относительно вспомогательной функции p(y)

 $p\frac{dp}{dy} = f(y, p)$

Решив это уравнение, найденную функцию р(у) подставим в исходную подстановку. В результате получим уравнение

$$\frac{dy}{dx} = p(y_1, C_1)$$

Интегрируя это уравнение, получаем общее решение

$$\Phi(x, y, C_1, C_2) = 0$$

Пример. Решить дифференциальное уравнение

$$\frac{1+y'^2=y\,y''}{P\text{ешение.}}$$
 Сделаем замену $y'=\frac{dy}{dx}$, $y''=\frac{d^2y}{dx^2}=p\,\frac{dp}{dy}$ Получим $yp\,\frac{dp}{dy}=1+p^2$ или $\frac{pdp}{1+p^2}=\frac{dy}{y}$

Интегрируя это выражение, получим:
$$\frac{1}{2}\ln(1+p^2) = \ln y + \ln C_1$$
$$\ln(1+p^2) = 2\ln y + 2\ln C_1$$
 ИЛИ
$$1+p^2 = C_1^2 y^2$$

Возвращаясь к переменной у, получим
$$1 + \left(\frac{dy}{dx}\right)^2 = C_1^2 y^2$$
 или
$$\frac{dy}{dx} = \pm \sqrt{C_1^2 y^2 - 1}$$
 ,

Интегрируя, получим
$$\frac{dy}{\sqrt{{C_1}^2 y^2 - 1}} = \pm dx$$

$$\frac{1}{C_1} \ln \left(C_1 y_1 + \sqrt{C_1^2 y^2 - 1} \right) = \pm \left(x + C_2 \right)$$

Линейные дифференциальные уравнения

Многие задачи математики, механики, электротехники и других технических наук приводят к линейным дифференциальным уравнениям.

Уравнение вида $a_0 y + a_2 y' + a_2 y = f(x)$, где a_0, a_1, a_2 , функции от х или постоянные числа, называется линейным дифференциальным уравнением второго порядка.

 $a_0, a_1, a_2,$ называются коэффициентами уравнения , а функция f(x) - его свободным членом.

Если свободный член равен нулю, т.е. f(x) = 0, то уравнение называется линейным однородным уравнением, в противном случае — линейным неоднородным.

Линейные однородные дифференциальные уравнения с постоянными коэффициентами

Уравнение вида:
$$ay'' + by' + cy = f(x)$$

где a, b, c постоянные, называются дифференциальными уравнениями второго порядка с постоянными коэффициентами.

Рассмотрим линейное однородное дифференциальное уравнение вида

$$ay'' + by' + cy = 0$$

Это уравнение может быть приведено к виду

$$y'' + py' + qy = 0$$

Две функции $y_1(x)$ и $y_2(x)$ называются линейно независимыми решениями линейного однородного уравнения, если их отношение отлично от нуля, т.е. $\frac{y_1(x)}{y_2(x)} \neq 0$

есть его общее решение, где C_1 и C_2 - постоянные.

Найдем решение уравнения y'' + py' + qy = 0

Частные решения этого уравнения будем искать в виде

$$y=e^{kx}$$
 , где $k=const$ Тогда $y'=k\,e^{kx}$, $y''=k^2\,e^{kx}$ Подставляя y , y' u y'' в исходное уравнение, получим $e^{kx}\,(k^2+pk+q)=0$ Так как $e^{kx}\neq 0$, то $k^2+pk+q=0$

Это уравнение называется характеристическим уравнением по отношению к линейному однородному уравнению с постоянными коэффициентами.

При решении этого уравнения возможны три случая:

- 1) k_1 и k_2 действительные и различные числа. Тогда общее решение уравнения будет иметь вид $y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$
 - 2) k_1 и k_2 действительные равные корни. Тогда общее решение имеет вид $y = e^{k_1 x} (C_1 + C_2 x)$
- 3) k_1 и k_2 комплексные корни: $k_1 = \alpha + \beta i$, $k_2 = \alpha \beta .i$ Тогда общее решение имеет вид:

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

<u>Пример 1.</u> Решить уравнение y'' - 4y' + 3y = 0. Составляем характеристическое уравнение $k^2 - 4k + 3 = 0$ Его корни равны $k_1 = 1, \ k_2 = 3$. Записываем общее решение: $y = c_1 e^x + C_2 e^{3x}$

<u>Пример 2.</u> Решить уравнение y'' + 25y = 0Характеристическое уравнение имеет вид: $k^2 + 25 = 0$ Корни этого уравнения равны: $k_1 = 5i$, $k_2 = -5i$ Тогда общее решение примет вид:

$$y = C_1 \cos 5x + C_2 \sin 5x$$

Пример 3. Решить уравнение y'' - 6y' + 9y = 0 Характеристическое уравнение: $k^2 - 6k + 9 = 0$ Находим корни этого уравнения: $k_1 = k_2 = 3$ Значит общее решение будет иметь вид

$$y = e^{3x}(C_1 + C_2 x)$$

Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами

Пусть дано неоднородное линейное дифференциальное уравнение второго порядка

$$y'' + py' + qy = f(x)$$

Структура общего решения этого уравнения определяется следующей теоремой:

<u>Теорема</u>. Общее решение неоднородного уравнения равно сумме решения y_0 однородного дифференциального уравнения y'' + py' + qy = 0 и какого-нибудь частного решения y'' неоднородного уравнения, т.е.

$$y = y_0 + \overline{y}$$

Для нахождения частного решения используют два метода:

- 1) метод неопределенных коэффициентов;
- 2) метод вариации произвольной постоянной

Метод неопределенных коэффициентов

1) Пусть правая часть уравнения представляет собой произведение показательной функции на многочлен:

$$f(x) = B_n(x)e^{\alpha x} = (B_0x^n + B_1x^{n-1} + \dots + B_n)e^{\alpha x}$$

где $B_n(x)$ -многочлен n-й степени.

Тогда возможны следующие случаи:

а) Число α не является корнем характеристического уравнения $k^2 + pk + q = 0$ В этом случае частное решение нужно искать в виде

$$\overline{y} = P_n(x)e^{\alpha x} = (A_0x^n + A_1x^{n-1} + \dots + A_n)e^{\alpha x}$$

б) Число α является однородным корнем характеристического уравнения. В этом случае частное решение нужно искать в виде:

$$y = x P_n(x) e^{\alpha x}$$

в) Число α есть двукратный корень характеристического уравнения. Тогда частное решение следует искать в виде

$$\overline{y} = x^2 P_n(x) e^{\alpha x}$$

<u>Пример 1.</u> Решить уравнение y'' + 5y' - 6y = x

Решение. Найдем общее решение однородного дифференциального уравнения y'' + 5y' - 6y = 0 . Составим характеристическое уравнение и найдем его корни $k^2 + 5k - 6 = 0$, $k_1 = 1$, $k_2 = -6$

Общее решение однородного уравнения имеет вид $y_0 = C_1 e^x + C_2 e^{-6x}$

Так как в правой части $\alpha=0$, то правую часть можно представить в виде $f(x) = xe^{0x}$, причем 0 не является корнем характеристического уравнения, поэтому частное решение будем искать в виде

$$y = A_0 x + B$$
 , тогда $y' = A$, $y'' = 0$

Подставляя эти выражения в исходное уравнение, получим

$$5A_0 - 6(A_0x + B) = x$$

Приравняв коэффициенты при одинаковых степенях х, получим

$$-6A_0 = 1,$$
 $5A_0 - 6B = 0$ или $A_0 = -\frac{1}{6},$ $B = \frac{5}{36}$

 $-6A_0=1, \quad 5A_0-6B=0$ или $A_0=-\frac{1}{6}, \quad B=\frac{5}{36}$ Следовательно, частное решение примет вид $y=-\frac{1}{6}x+\frac{5}{36}$

Общее решение $y = y_0 + y$ получится в виде

$$y = C_1 e^x + C_2 e^{-6x} - \frac{1}{6}x + \frac{5}{36}$$

<u>Пример 2.</u> Решить дифференциальное уравнение $y'' - 2y' + y = e^x$

Решение. Найдем решения однородного уравнения y''-2y'+y=0. Здесь характеристическое уравнение имеет вид $k^2-2k+1=0$. Его корни $k_1=k_2=1$. Общее решение однородного уравнения имеет вид

$$y_0 = (C_1 + C_2 x)e^x$$

 $\alpha = 1$ является двукратным корнем характеристического уравнения, значит частное решение уравнения имеет вид

$$y = Ax^2e^x$$
, тогда $y = A(2x+x^2)e^x$, $y = A(2+4x+x^2)e^x$
Подставляя y, y, y в заданное дифференциальное уравнение, получим

$$A\Big[(2+4x+x^2)-2(2x+x^2)+x^2\Big]=1$$

Откуда $2A=1, \qquad A=rac{1}{2}$

Следовательно, частное решение имеет вид $\frac{-}{y} = \frac{1}{2} x^2 e^x$ Общее решение уравнения равно

$$y = (C_1 + C_2 x)e^x + \frac{1}{2}x^2 e^x$$

2) Пусть правая часть уравнения имеет вид

$$f(x) = e^{\alpha x} (A_n(x) \cos \beta x + B_m(x) \sin \beta x)$$

где $A_n(x)$ и $B_m(x)$ многочлены.

а) если $\alpha \pm i\,\beta$ не является корнем характеристического уравнения, то частное решения уравнения следует искать в виде

$$y = e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x)$$

где $P_{n}(x)$ и $Q_{m}(x)$ - многочлены, степень которых равна наивысшими степенями многочленов $A_{n}(x)$ и $B_{m}(x)$.

б) Если $\alpha \pm i\,\beta$ есть корень характеристического уравнения, то частное решение имеет вид

$$\overline{y} = x e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x)$$

Пример. Решить уравнение $y'' + 2y' + 5y = 2\cos x$

<u>Решение.</u> Корни характеристического уравнения $k^2 + 2k + 5 = 0$ равны $k_1 = -1 + 2i, \quad k_2 = -1 - 2i$. Поэтому общий интеграл соответствующего однородного уравнения y'' + 2y' + 5y = 0 является функция $y_0 = e^{-x}(C_1\cos 2x + C_2\sin 2x)$

Частное решение ищем в виде $\overline{y} = P\cos x + Q\sin x$

Тогда $y' = -P\sin x + Q\cos x$, $y'' = -P\cos x - Q\sin x$, где P и Q постоянные числа.

Подставляя $\frac{-}{y}, \frac{-}{y}, \frac{-}{y}$ в данное уравнение, получим 4P + 2Q = 2 и -2P + 4Q = 0 Откуда $P = \frac{2}{5}, \ Q = \frac{1}{5}$ Частное решение: $y = \frac{2}{5}\cos x + \frac{1}{5}\sin x$

Окончательно, общее решение примет вид

$$y = e^{-x} (C_1 \cos 2x + C_2 \sin 2x) + \frac{2}{5} \cos x + \frac{1}{5} \sin x$$