
The basic concepts of the
language. Types of variables.

Input. Class Math.

Lesson 2

1

Questions:

1. The structure of the language.

2. Data types.

3. Console input.

4. Class Math.

5. Input and output from a file.

6. Iteration (Looping) Statement while

2

1.The structure of the language.

• The alphabet includes:

• letters and an underscore;

• numbers;

• special characters, e.g. +, *, {,]whitespace
characters (space and tab character);

• the newline characters.

3

Lexeme – a minimal unit of language:

• names (identifiers);

• key words;

• operation signs;

• dividers;

• literals (constants).

4

• The expression specifies how to
compute a certain value (a+b).

• The operator sets a complete
description of some action, data, or
program element.
 C=a + b;

5

1.2. Identifiers

• The identifier can be letters, digits, and the
underscore character. The first character letter
or underscore. Uppercase and lowercase
letters differ.

6

• Notation — the agreement on the rules to
generate names.In the notation of Pascal each
word constituting the identifier starts with a
capital letter, for example, MaximumValue.

• Hungarian notation (it is suggested that the
Hungarian nationality, the employee of
Microsoft) differs from the previous presence
of the prefix corresponding to the type value,
for example, i_ValueCounter

7

• According to Camel notation, with an
uppercase letter begins each word
constituting the identifier except the first, for
example, maxline.

• Another tradition (4th notation) to separate
words that compose the name, with an
underscore: max_line.,
 with all parts begin with a lowercase letter.

8

• In C# for naming different types of software
objects are often used two notations: Pascal
and Camel.

• In C#, called classes, methods and constants in
accordance with the notation of Pascal, and
the local variables in accordance with the
Camel notation.

9

1.3.Key words.

•Keywords are reserved identifiers
that have special meanings to the
compiler. (Tab.2.1.)

10

1.5.Literals.

• Literals or constants are called
immutable values. Constants can be
Boolean, integer, real, character and
string, and a null constant.

11

• Boolean : true, false.

• Integer constant: decimal or hexadecimal.
Decimal: the sequence of decimal digits,
which may be followed by a suffix (U, u, L, l,
UL, UL, ul, LU, Lu, lU, lu)
 Examples: 76 , 123456, 45789L, 876ul

12

• Hexadecimal: 0x or 0X, followed by
hexadecimal digits. Numbers may be followed
by a suffix (U, u, L, l, UL, UL, ul, LU, Lu, lU, lu)

• Examples: 0x123, 0XADE43LU, 0x329L,
0x8765ABCLu

13

• Real literals are represented only in decimal,
but in two forms: fixed point and with the
order . To clarify the allocated memory used
suffixes: (F, f, D, d, M, m).

• Fixed point – a part separated from the
decimal point. 65.43, 87.9

14

• A real constant with the procedure is
represented as a mantissa and order. The
mantissa is written to the left of the exponent
sign (E or e), the order on the right. The
constant value is defined as the product of a
mantissa and raised to the specified in the
order a power of 10. Examples: 5.43e4 = 5,43
* 104

15

• When the compiler recognizes a constant, it
assigns her a place in memory according to its
type and value. If you want to explicitly specify
how much memory should I allocate to
constant, use the suffixes given in tab. 2.3.

16

• Character – character in Unicode, enclosed in
apostrophes.The character constant is written
in one of four forms (tab.2.2.):

• 1.The usual symbol having a graphical
representation (except for the apostrophe and
newline), ‘A’, ‘n’ ;

• 2.Sequence (tab. 2.4) is a specific character
preceded by a backslash. (\t , \n).

17

• Sequence is interpreted as a single character
and is used to represent:

• Codes not having a graphical image (e.g.,
transition to beginning of next line \n);

• Characters that have a special meaning in
string and character literals, such as the
apostrophe \’ , double quote \”.

18

• String constant – sequence of characters enclosed
in quotation marks.Escape sequences can be used
in string literals. Literal literal begins with the
character@. It is advisable to use especially when
setting the full file path.

• Example. To set the path to the file with and
without using the verbatim literal:
@“C:\student\Program Files\Common
Files\Microsoft Shared\Help”

• “C:\\student\\Program Files\\Common
Files\Microsoft Shared\\Help”

19

2.Data types.

• The data on which the program is stored in
RAM. The compiler needs to know how much
space they occupy, how it is encoded, and
what actions they can perform. The data type
uniquely identifies:

• internal data representation, and
consequently many of their possible values;

• possible actions on the data.

20

•Each expression in the program
has a type. Variables have no type
exists. The compiler uses type
information while the validation
described in the programme of
action.

21

• A memory in which are stored data during
program execution and are divided into two
region: the stack and the dynamic area (heap,
managed heap).

• The stack is used to store values, provided by
the compiler,

• and dynamic memory is reserved and
released during program execution.

• The main place to store data in C# is hip.

22

Classification of data types:

• Types can be classified according to various
criteria. In the classification according to the
structure of element types can be simple
(have no internal structure) and structured
(composed of elements of other types).

• According to its Creator types are divided into
built-in and programmer-defined;

23

• At the time of memory allocation types are
divided into static (the volume is known, the
memory is allocated at Declaration time) and
dynamic (in the time of the announcement
the memory is not known, stands out on
request during execution of the program).

24

Built-in types

• Do not require prior definition.
Tab.2.5.Correspond to the standard class
library .NET certain the System
namespace.Integer types, as well as the
symbolic, physical and financial can be
grouped under the name of arithmetic types.

25

• The internal representation of a value of
integer type is an integer in binary code. In the
iconic types of the MSB of the number is
interpreted as the sign (0 is positive, 1 –
negative). Negative numbers are represented
in so-called supplementary code.

26

• The internal representation of real numbers
consists of two parts – mantissa and order,
each piece has a sign.

• The length of the significand determines the
precision of the number, and the length of his
order - range. All material types can represent
both positive and negative numbers.

• Most often, the program uses type double.

27

• The decimal type is intended for monetary
calculations are critical rounding errors. As can be
seen from table 2.5 the float type allows you to
store 7 significant decimal digits, double is 15-16.

• When calculating round-off errors accumulate !!!

• The value of the decimal enables you to store
28-29 decimal places. They have their own
internal representation, they cannot be used in
the same expression with the material without
explicit type conversion. The use of financial
variables type in the same expression with integer
allowed

28

The types of literals.

• If the value of the integer literal is within the
range of valid values of type int, the literal is
treated as int, otherwise it belongs to the
smallest of the types uint, long, ulong in the
range of values of which he is part.

• Floating point literals default to type double .

29

• Examples.

• 10 - int;

• 2147483648 – uint

• 2.6 – double

• To explicitly set the type of the literal is the
suffix. (tab.2.3). Explicit assignment is used to
reduce the number of implicit type
conversions by the compiler.

30

Packing and unpacking.

• Conversion from type value to a reference
type is called Boxing (boxing), inverse -
unpacking. If the value of meaningful use in
the place where you want a reference type,
automatically creating the intermediate values
of a reference type creates a reference in the
hip is allocated the appropriate amount of
memory and is copied back value, i.e. the
value of the like is Packed into the object.

31

3. Console input

• To input variable string from console we are to
use operator.

• Examples.

• string s;

• s=Console.ReadLine();

• double weight _first_package;

• weight _first_package=
Convert.ToDouble(Console.ReadLine());

32

• int variableFirst;

• variableFirst=
Convert.ToInt32(Console.ReadLine());

33

After you enter a value variable must
make a control output

• Console.WriteLine(" Enter the value of the
variable variableFirst ");

• variableFirst =
Convert.ToInt32(Console.ReadLine());

• Console.WriteLine(" The value entered
to a variable variableFirst =" + variableFirst);

•

34

4.Class Math.
(page 65)

• In terms often used mathematical functions
such as sine or exponentiation. They are
implemented in the Math class, defined in the
space System. Using the methods in this class
can calculate:

• trigonometric functions: Sin, Cos, Tan;

• inverse trigonometric functions: ASin, ACos,
ATan, ATan2;

35

• hyperbolic functions: Tanh, Sinh, Cosh;

• exponent and logarithm functions: Exp, Log,
LoglO;

• modulus (absolute value), square root, sign, Abs,
Sqrt, Sign;

• rounding: Ceiling, Floor, Round;

• minimum, maximum: Mi n, Max;

• degree of balance: Pow, IEEEReminder;

• complete product of two integer values: BigMul;

• division and modulo: DivRem.

36

5.Input and output from a file

• To enter information from a file, you must:
• 1.Add the namespace System.IO;
• 2.Create object of StreamReader class to enter information

from a file. As a parameter when you create, you specify the
path to the file.

• 3.To create an object of StreamWriter class to output
information to a file. As a parameter when you create, you
specify the path to the file.

• 4.To apply to these objects the methods ReadLine() and
WriteLine (), respectively.

• 5.When you are finished with the objects of the
StreamReader and StreamWriter to apply to them the
Close () method.

37

Specify the path to the file

• StreamReader f_чтение = new
StreamReader("input.txt"); // First option of
the operator when the file input.txt is in the
folder project/bin/debug

• StreamReader f_чтение = new
StreamReader("../../input.txt"); //Second
option operator, when the file input.txt
located in the folder of the project.

38

• StreamReader f_чтение = new
StreamReader(@"D:\input.txt”); //Third
option operator, when the file input.txt
located in an arbitrary folder..

39

Iteration (Looping) Statement while

• There are many situations in which you will
want to do the same thing again and again,
perhaps slightly changing a value each time
you repeat the action. This is called iteration
or looping. Typically, you'll iterate (or loop)
over a set of items, taking the same action on
each.

40

• The semantics of the while loop are "while this
condition is true, do this work." The syntax is:

• while (boolean expression) statement

• As usual, a Boolean expression is any
statement that evaluates to true or false. The
statement executed within a while statement
can of course be a block of statements within
braces.

41

Example

• int counterVariable = 0;
• // while the counter variable is less than 10
• // print out its value
• while (counterVariable < 10)
• { Console.WriteLine("counterVariable:

{0}",counterVariable);
• counterVariable++;
• }

42

Tasks

• Task 1.
• To calculate the value functions:

• in the range of the argument from a1 to a2
increments a3. These values are entered from the
console. The result of the calculation is displayed
on the console and to a file.

•

43

• Task 2.

• To calculate the value functions:

• in the range of the argument from a1 to a2
increments a3. These values are entered from
the file. The result of the calculation is
displayed on the console and to a file.

•

44

