Электронное пособие

по теме: «Вневписанная окружность».

Содержание:

1. Определение вневписанной окружности. Основные теоремы и формулы.

- Определение вневписанной окружности.
- Центр вневписанной окружности.
- Касательная к вневписанной окружности.
- Радиус вневписанной окружности:
- Соотношение между радиусом вневписанной окружности и периметром треугольника.
- Соотношение между радиусом вневписанной окружности, площадью и периметром треугольника.

Задачи:

- <u>Задача №1.</u>
- *Задача №2*.
- <u>Задача №3.</u>

2. Соотношения с радиусами вневписанных окружностей.

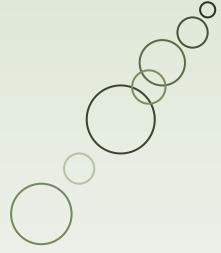
- Выражение суммы радиусов вневписанных окружностей через радиус вписанной окружности и радиус описанной окружности.
- Выражение суммы величин, обратных радиусам вневписанных окружностей, через величину обратную радиусу вписанных окружностей.
- Выражение суммы всех попарных произведений радиусов вневписанных окружностей через квадрат полупериметра треугольника.
- Выражение произведения радиусов вневписанных окружностей через произведение радиуса вписанной окружности и квадрат полупериметра треугольника. + следствие №1.

следствие №2.

Задачи:

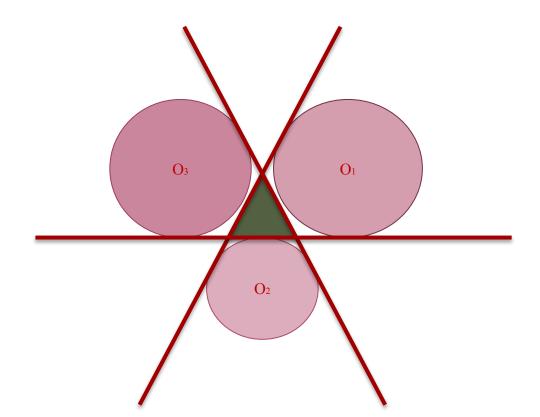
- <u>Задача №4.</u>
- Задача №5.
- *Задача №6.*
- *Задача №7.*

1. Определение вневписанной окружности. Основные теоремы и формулы.



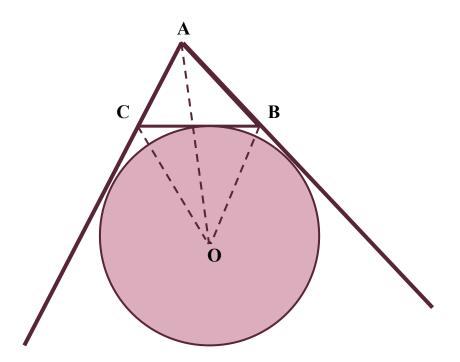
• Вневписанная окружность.

Окружность называется <u>вневписанной</u> для треугольника, если она касается одной стороны треугольника и продолжений двух других сторон. Для каждого треугольника существует <u>три</u> вневписанных окружности, которые расположены вне треугольника, почему они и получили название вневписанных.

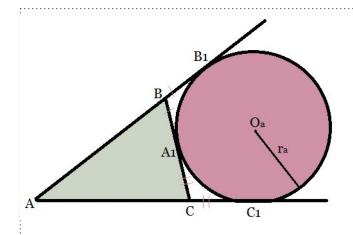


• Центр вневписанной окружности.

<u>Центр вневписанной окружности</u> треугольника — точка пересечения биссектрисы внутреннего угла треугольника, противолежащего той стороне треугольника, которой окружность касается, и биссектрис двух внешних углов треугольника.



I. Расстояние от вершины угла треугольника до точек касания вневписанной окружности со сторонами этого угла равны полупериметру данного треугольника $AB_1 = AC_1 = \frac{P}{2}$.



Дано:

∆ABC; Вневписанная окр. (Oa;ra)

Доказать:
$$AB_1 = AC_1 = \frac{P}{2}$$
.

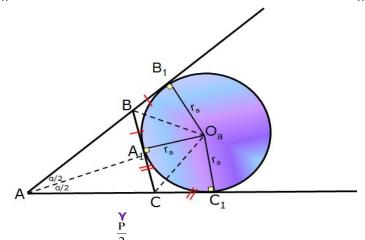
Док-во:

Т.к. касательные, проведенные из одной точки, равны ,то BB1=BA1, CA1=CC1, AB1=AC1.

3начит, $P = (AC+CA_1)+(AB+BA_1)=(AC+CC_1)+(AB+BB_1)=AC_1+AB_1=2AC_1=2AB_1$, т.е.

$$AB_1 = AC_1 = \frac{P}{2}.$$

II . Радиус вневписанной окружности, касающейся сторон данного внутреннего угла треугольника, равен произведению полупериметра треугольника на тангенс половины этого угла, т. е. $r_a = \frac{P}{2} * tg \frac{\alpha}{2}, r_b = \frac{P}{2} * tg \frac{\beta}{2}, r_c = \frac{P}{2} * tg \frac{\gamma}{2}$.



Дано:

∆ABC; Вневписанная окр. (Oa;ra)

Доказать:
$$r_a = \frac{P}{2} * tg \frac{\alpha}{2}$$
.

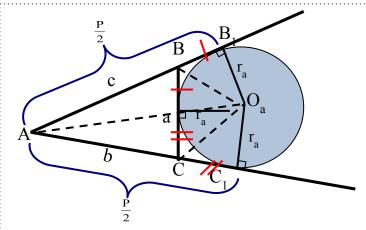
Док-во:

В прямоугольном треугольнике $\triangle AO_aC_1$ га и $\frac{P}{2}$ – длины катетов, $\angle O_aAC = \frac{\alpha}{2}$,

поэтому $r_a = \frac{P}{2} * tg \frac{\alpha}{2}$, что и требовалось доказать.

III. Радиус вневписанной окружности, касающейся данной стороны треугольника, равен отношению площади треугольника к разности

полупериметра и этой стороны. т.е.
$$r_a = \frac{S}{\frac{P}{2} - a}, \ \, r_b = \frac{S}{\frac{P}{2} - b}, \ \, r_c = \frac{S}{\frac{P}{2} - c}.$$



Дано:

∆АВС; Вневписанная окр. (Oa;ra)

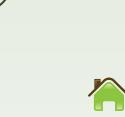
Доказать:
$$r_a = \frac{S}{\frac{P}{2} - a}.$$

Док-во:
$$S_{ABC} = S_{AO_aC} + S_{BO_aC} - S_{BO_aC} = \frac{r_a}{2} \times (b + c - a) = r_a \times \left(\frac{P}{2} - a\right)$$
, т.е.

Имеем:
$$r_{\rm a} = \frac{S}{\frac{P}{2} - a}$$
 , что и требовалось доказать.

Задачи

на свойства касательной к вневписанной окружности и ее радиусов:

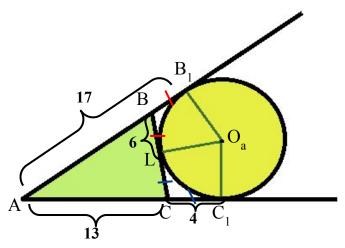


Задача№1.

Найдите периметр треугольника ABC, если расстояние от вершины A до точки касания с вневписанной окружностью равно 17, расстояние от вершины B до точки касания окружности со стороной BC равно 6, расстояние от вершины C до точки касания окружности со стороной AC равно 4.

(авторская задача)

Решение:



Дано: $O\kappa p(O_a;O_aC_1);\Delta ABC;AB_1=17, BL=6, CC_1=4.$ *Haŭmu:* P-?.

Решение №1:

- 1) Рассмотрим $\triangle ABC$.
- Т.к. $BL=BB_1=6$ (как отрезки касательных, проведенные из одной точки), то $AB=AB_1-BB_1=>$ AB=17-6=11.
- 2) Т.к. $CL=CB_1=4$ (как отрезки касательных, проведенные из одной точки), то BC=BL+LC=>BC=6+4=10.
- 3) Т.к. $AB_1 = AC_1 = 17$ (как отрезки касательных, проведенные из одной точки), то $AC = AC_1 CC_1 = AC = 17-4 = 13$.
- 4) $P = AB + BC + AC \Rightarrow P = 11 + 10 + 13 = 34$.

Решение №2:

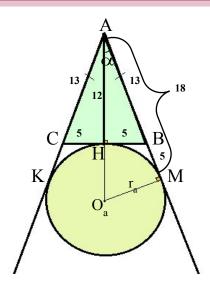
1) Т.к $\mathbf{AB_1} = \mathbf{AC_1} = \frac{\mathbf{P}}{2}$ (по теореме о касательной вневписанной окружности), то $\mathbf{P} = \mathbf{AB_1} * \mathbf{2} = \mathbf{P}$ $\mathbf{P} = \mathbf{17} * \mathbf{2} = \mathbf{34}$.

Oтвет: P = 34.

Задача№2.

Найдите радиус вневписанной окружности треугольника со сторонами 13, 13, 10.

(ЕГЭ-2015, система задач по геометрии Р.К.Гордина)



Решение 1:

Дано:

 $Oκp(O_a; r_a); ΔABC; AB=13, AC=13, BC=10.$

Найти: r₂ -?.

Решение (1 случай):

1. Пусть стороны АВ, АС и ВС треугольника АВС равны 13, 13 и 10 соответственно, АН высота треугольника, га — радиус вневписанной окружности, касающейся сторон ВС, АС и АВ в точках Н, К и М соответственно.

2.Поскольку дАВС равнобедренный, точка Н — высота и середина основания ВС.

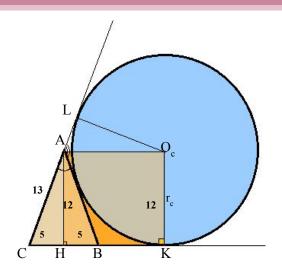
Рассмотрим $\triangle AHB$, где ∠H=90°. По теореме Пифагора: $AB^2 = AH^2 + HB^2 \Rightarrow 13^2 = AH^2 + 5^2 \Rightarrow AH = 12$.

3. Пусть Оа — центр вневписанной окружности, касающейся стороны ВС и продолжения сторон АС и АВ, причём продолжения стороны АВ —в точке М. Тогда ВМ = ВН = 5 (как отрезки касательных, проведенные из одной точки); AM = AB + BM = 13 + 5 = 18. 4. Рассмотрим $\triangle AMO_a$, где $\angle M=90^\circ$ (теорема о касательной к окружности).

По теореме радиусе вневписанной окружности получаем, что $r_a = AM * tg \angle MAH$

(АМ= Р по теореме о расстоянии от вершины угла треугольника до точек касания с

вневписанной окружности) $\Rightarrow r_a = 18 * \frac{5}{12} = 7.5.$



Решение 2:

Дано:

 $Oκp(O_c;r_c); ΔABC; AB=13, AC=13, BC=10.$

Найти: r_c -?.

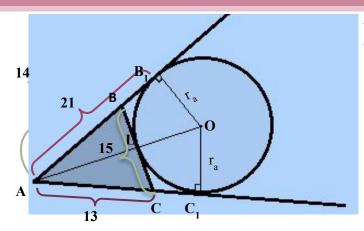
Решение (2 случай):

- 1. Пусть O_c центр вневписанной окружности, касающейся стороны AB и продолжений сторон BC и AC в точках K и L соответственно. Тогда AO —биссектриса \angle BAL, а так как AH биссектриса смежного с ним \angle BAC, то \angle HAO $_c$ = 90°.
- 2. Четырёхугольник AOcKH прямоугольник (\angle HAOc = \angle AHK = \angle HKOc= 90°),поэтому \mathbf{r}_{c} = OcK = AH = 12.
- 3. Аналогично найдём, что $r_b = AH = 12$.

Задача№3.

Найдите радиус вневписанной окружности, если расстояние от вершины A до точки касания с окружностью равно 21, BC=15, AB=14,AC=13.

(авторская задача)



Решение:

Дано: AB1=21, AB=14, AC=13, BC=15.

Haŭmu: ra-?.

Решение:

1) Рассмотрим
$$\triangle ABC$$
 : $\frac{P}{2} = AB_1 = AC_1 = 21_{(\text{по теореме о касательной к вневписанной окружности)}}$

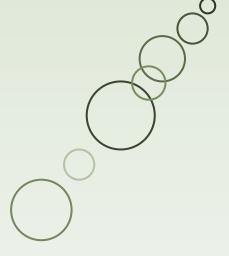
2)
$$S_{\Delta ABC} = \sqrt{\frac{P}{2}*\left(\frac{P}{2}-AB\right)*\left(\frac{P}{2}-BC\right)*\left(\frac{P}{2}-AC\right)}$$
 (по формуле Герона) $S_{\Delta ABC} = \sqrt{21*(21-14)*(21-15)*(21-13)}$ $S_{\Delta ABC} = \sqrt{21*7*6*8} = 84.$

3) По теореме о радиусе вневписанной окружности:

$$r_a = \frac{S}{\frac{P}{2} - BC} = r_a = \frac{84}{21 - 15} = 14.$$

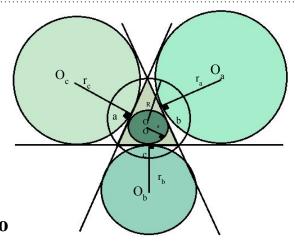
Ответ: $r_a = 14$.

2. Соотношения с радиусами вневписанных окружностей.



Выражение суммы радиусов вневписанных окружностей через радиус вписанной окружности и радиус описанной окружности.

$$r_a + r_b + r_c - r = 4R$$



Дано:

 \triangle ABC; Вневписанная окр. (Oa;ra), (Ob;rb), $(O_c; r_c)$, вписанная окр.(O; r), описанная окр.(O; R). Доказать: $r_a + r_b + r_c - r = 4R$

Док-во

Выразим все радиусы через стороны, S и полупериметр треугольника: $r = \frac{S}{P}$, $R = \frac{abc}{4S}$, $r_a = \frac{S}{P-a}$, $r_b = \frac{S}{P-b}$, $r_c = \frac{S}{P-c}$

Значит,
$$\mathbf{r}_{\mathrm{a}} + \mathbf{r}_{\mathrm{b}} + \mathbf{r}_{\mathrm{c}} - \mathbf{r} = \frac{\mathbf{S}}{\frac{\mathbf{P}}{2} - \mathbf{a}} + \frac{\mathbf{S}}{\frac{\mathbf{P}}{2} - \mathbf{b}} + \frac{\mathbf{S}}{\frac{\mathbf{P}}{2} - \mathbf{c}} - \frac{\mathbf{S}}{\frac{\mathbf{P}}{2}} =$$

$$=s\frac{\frac{P}{2}(\frac{P}{2}-b)(\frac{P}{2}-c)+\frac{P}{2}(\frac{P}{2}-a)(\frac{P}{2}-c)+\frac{P}{2}(\frac{P}{2}-a)(\frac{P}{2}-b)-(\frac{P}{2}-b)-(\frac{P}{2}-a)(\frac{P}{2}-b)(\frac{P}{2}-c)}{\frac{P}{2}(\frac{P}{2}-a)(\frac{P}{2}-b)(\frac{P}{2}-c)}=s\frac{abc}{S^2}=\frac{abc}{S}$$

=> поскольку радиус описанной окружности удовлетворяет равенству $\mathbf{R}=\frac{\mathbf{abc}}{\sqrt{\mathbf{S}}}$, то справедлива формула

$$r_{\rm a} + r_{\rm b} + r_{\rm c} - r = 4 {
m R}$$
 ,что и требовалось доказать.

• Выражение суммы величин, обратных радиусам вневписанных окружностей, через величину обратную радиусу вписанных окружностей.

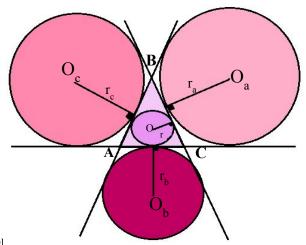
$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$$

• Выражение суммы всех попарных произведений радиусов вневписанных окружностей через квадрат полупериметра треугольника.

$$r_a r_b + r_b r_c + r_c r_a = \left(\frac{P}{2}\right)^2$$

• Выражение произведения радиусов вневписанных окружностей через произведение радиуса вписанной окружности и квадрат полупериметра треугольника.

$$r_{a}r_{b}r_{c} = r\left(rac{P}{2}
ight)^{2}$$



Дано:

 \triangle ABC; Вневписанная окр. (Oa; r_a), (Ob; r_b), (Oc; r_c), вписанная окр.(O;r).

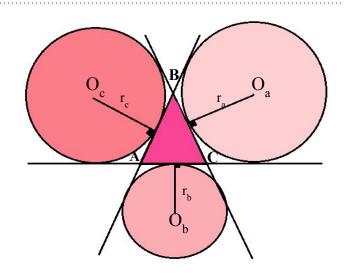
Доказать: $r_a r_b r_c = r \left(\frac{P}{2}\right)^2$.

$$S = \sqrt{\frac{P}{2}*\left(\frac{P}{2}-AB\right)*\left(\frac{P}{2}-BC\right)*\left(\frac{P}{2}-CA\right)}.$$
 Тогда $r_a r_b r_c = \frac{S^3}{\left(\frac{P}{2}-AB\right)*\left(\frac{P}{2}-CD\right)} = \frac{S^3}{\frac{P}{2}} = S\frac{P}{2} = \frac{P}{2}r*\frac{P}{2} = r\left(\frac{P}{2}\right)^2$, что и требовалось доказать.

1 следствие:

Площадь треугольника равна отношению произведения всех трех радиусов вневписанных окружностей к полупериметру треугольника.

$$S = \frac{r_a r_b r_c}{\frac{P}{2}}$$



Дано: \triangle ABC; Вневписанная окр. (Oa;ra), (Ob;rb), (Oc;rc).

Доказать:
$$S = \frac{r_a r_b r_c}{\frac{P}{2}}$$
.

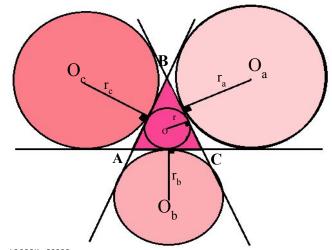
Док-во:

$$W_3 \ r_{\rm a} r_{\rm b} r_{\rm c} = r \bigg(rac{P}{2} \bigg)^2 = r rac{P}{2} * rac{P}{2} = S rac{P}{2}.$$
 Следовательно $S = rac{r_{\rm a} r_{\rm b} r_{\rm c}}{rac{P}{2}}$, что и требовалось доказать.

2 следствие:

Площадь треугольника равна квадратному корню из произведения всех трех радиусов вневписанных окружностей и радиуса вписанной окружности.

$$S = \sqrt{r_a r_b r_c r}$$



Дано: ΔABC ; Вневписанная окр. (Oa;ra), (Ob;rb), (Oc;rc) вписанная окр.(O;r). $S = \sqrt{r_a r_b r_c r}$

Доказать:

док-во:

Из *следствия* 1 , что $S = \frac{r_a r_b r_c}{\frac{P}{2}}$ и равенства, $S = \frac{P}{2} * r$ получаем, перемножая их почленно,

$$S^{2=}rac{r_{a}r_{b}r_{c}}{rac{P}{2}}*rac{P}{2}$$
 $r=r_{a}r_{b}r_{c}r_{c}$ Значит, $S=\sqrt{r_{a}r_{b}r_{c}r}$, что и требовалось доказать.

Задачи на соотношения с радиусов вневписанных окружностей:



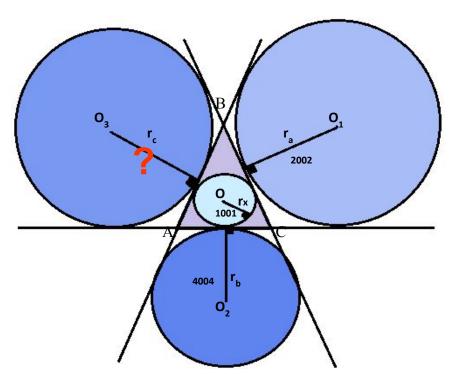
Задачи:

Задача№4.

Найдите радиус вневписанной окружности треугольника, если радиусы двух других вневписанных окружностей равны 2002 и 4004, а радиус вписанной окружности равен 1001.

РЕШЕНИЕ

Решение:



Дано: $\triangle ABC$; Oкр(O; r_x=1001), Oкр(O₃,r_c),

 $O\kappa p(O_1; r_a=2002), O\kappa p(O_2; r_b=4004).$

Haŭmu: rc-?

Решение:

Т.к. сумма величин, обратных радиусам вневписанных окружностей, равна

величине, обратной радиусу вписанной окружности, а именно $\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$, то

составим равенство:
$$\frac{1}{2002} + \frac{1}{4004} + \frac{1}{r_c} = \frac{1}{1001} \Rightarrow \frac{1}{r_c} = \frac{1}{1001} - \frac{1}{2002} - \frac{1}{4004} \Rightarrow \frac{1}{r_c} = \frac{1}{4004} \Rightarrow r_c = 4004.$$

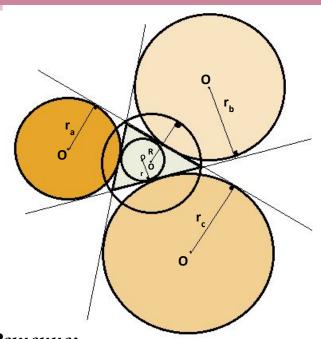
Omsem: rc=4004.

Задачи:

Задача №5.

Найдите произведение сторон треугольника, если известно, что радиусы его вневписанных окружностей равны 9,18 и 21.

(сборник «Подготовка к **ЕГЭ-**2010, под редакцией Ф.Ф.Лысенко)



Решение:

Дано: $\triangle ABC$; $r_a=9$, $r_b=18$, $r_c=21$; $O\kappa p(O, r_c)$, $O\kappa p(O; r_a)$, $O\kappa p(O; r_b)$, $O\kappa p(O; R)$.

Найти: a*b*c-?

Решение:

$$S = \frac{abc}{4R}$$
, следовательно $abc = S*4R$.

1. Найдем S:
$$S = \frac{r_a r_b r_c}{\frac{P}{2}} \Rightarrow \left(\frac{P}{2}\right)^2 = r_a r_b + r_b r_c + r_c r_a \Rightarrow \frac{P}{2} = \sqrt{9*18+9*21+18*21} = 27$$
, получаем $S = \frac{9*18*21}{27} = 126$;

2. Найдем 4R:
$$4R = r_a + r_b + r_c - r \Rightarrow r = \frac{r_a r_b r_c}{\left(\frac{P}{2}\right)^2} \Rightarrow r = \frac{9*18*21}{27^2} = \frac{14}{3} \Rightarrow 4R = 9+18+21-\frac{14}{3} = \frac{130}{3};$$

3. Подставляем:
$$abc = \frac{126*130}{3} = 5460$$
.

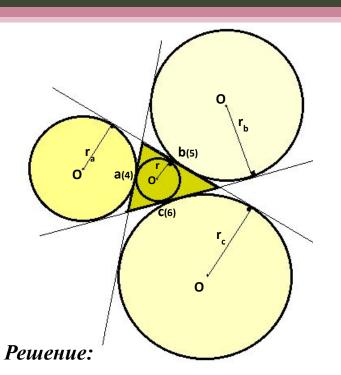
Ответ: 5460.

Задачи:

Задача №6.

Найдите произведение радиусов всех вневписанных окружностей треугольника со сторонами 4,5,6.

(сборник «Подготовка к **ЕГЭ-**2010, под редакцией Ф.Ф.Лысенко)



Решение:

Дано: $\triangle ABC$; a=4, b=5, c=6; $\bigcirc Kp(O, r_c)$, $\bigcirc Kp(O; r_a)$, $\bigcirc Kp(O; r_b)$

Haŭmu: $r_a * r_b * r_c - ?$

1. Так как $_{a^*b^*c} - _{(2)}$ где r-радиус вписанной в треугольник окружности, то:

$$P_{\Delta ABC} = 4 + 5 + 6 = 15 \Rightarrow \frac{P}{2} = \frac{15}{2} = 7.5.$$

$$2. \text{ Так как } \mathbf{r} = \frac{\mathbf{S}}{\frac{\mathbf{P}}{2}} = \frac{\sqrt{\frac{\mathbf{P}}{2}(\frac{\mathbf{P}}{2} - \mathbf{a})(\frac{\mathbf{P}}{2} - \mathbf{b})(\frac{\mathbf{P}}{2} - \mathbf{c})}}{\frac{\mathbf{P}}{2}}, \mathbf{r} = \frac{\sqrt{7,5(7,5-4)(7,5-5)(7,5-6)}}{7,5} = \frac{3,75\sqrt{7}}{7,5} = \frac{\sqrt{7}}{2}.$$

Таким образом,
$$r_a r_b r_c = \frac{\sqrt{7}}{2} * (7,5)^2 = \frac{\sqrt{7}}{2} * 56,25 = \frac{225\sqrt{7}}{8}$$
.

Ombem: $\frac{225\sqrt{7}}{8}$.

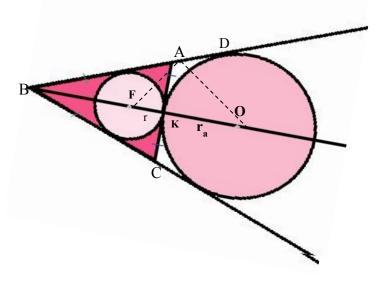
Задачи:

Задача№7.

Основание АС равнобедренного треугольника равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания АС в его середине. Найдите радиус окружности вписанной в треугольник АВС.

(сборник «Подготовка к **ГИА-2013**, под редакцией Д.А. Мальцева)

Решение:



Дано: \triangle ABC-равнобедренный; AC= 10; вписанная окр.(F; r), вневписанная окр. $(O; r_a=7,5)$.

Найти: r-?

Решение:

- 1. Так как окружность касается стороны треугольника и продолжения двух других сторон, то это вневписанная окружность.
- 2. Так как центр вписанной окружности и вневписанной окружности лежит в точке пересечения биссектрис, то AF-биссектриса \angle BAC, а AO – биссектриса \angle CAD => Δ FAO – прямоугольный треугольник, так как биссектрисы смежных углов образуют прямой угол.
- 3. AK высота, проведенная к гипотенузе => AK^2 =FK*KO (по теореме о высоте прямоугольного Δ) =>

$$5^2 = FK * 7,5 => FK = \frac{25}{7.5} = \frac{10}{3}$$
.

 $5^2 = FK * 7,5 => FK = \frac{25}{7,5} = \frac{10}{3}$. Так как FK – радиус вписанной в ΔABC окружности, следовательно $FK = r = \frac{10}{3}$.

Ответ: 10

Список литературы:

- Блинков А., Блинков Ю. Вневписанная окружность. "Квант", №3, 2009.
- «Геометрия. 9 класс.» Авторы: Мерзляк А. Г., Полонский В. Б., Якир М. С. «Вентана-Граф» 2014г.
- ЕГЭ 2015. Математика. Решение задачи 18 .Автор: Рафаил Гордин.
- Лысенко Ф.Ф. «Математика. Подготовка к ЕГЭ-2010» Ростов-на-Дону, «Легион-М» 2009г.
- http://opengia.ru/
- http://reshuege.ru/
- http://reshuoge.ru/
- https://ru.wikipedia.org/wiki/Вневписанная_окружность
- http://www.resolventa.ru/uslugi/uslugischoolsev.htm

