Тема урока:

«Теорема Виета»

По праву достойна в стихах быть воспета О свойствах корней теорема Виета

Вспомним:

- Какое уравнение называется квадратным?
- Какие виды квадратных уравнений вы знаете?
- Какое уравнение называется неполным квадратным?
- Как называются коэффициенты квадратного уравнения?
- Какое выражение называется дискриминантом?
- От чего зависит количество корней квадратного уравнения?

Решить устно уравнения

$$x^2 - 36 = 0$$

$$X_1 = 6, X_2 = -6$$

$$y^2 + 49 = 0$$

нет решения

$$c^2 - 7c = 0$$

$$c_1 = 0, c_2 = 7$$

$$5x^2 = 0$$

$$\mathbf{x} = \mathbf{0}$$

Составьте устно уравнения,

корнями которых являются числа:

а) 0 и 3

$$x^2 - 3x = 0$$

б) 7 и - 7

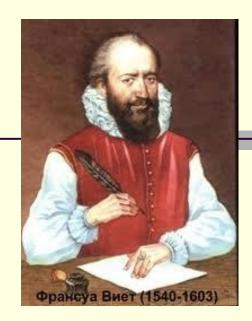
$$x^2 - 49 = 0$$

 $_{\rm B}) - 5 и 5$

$$x^2 - 25 = 0$$

$$x^2 - 4 = 0$$

Определение:

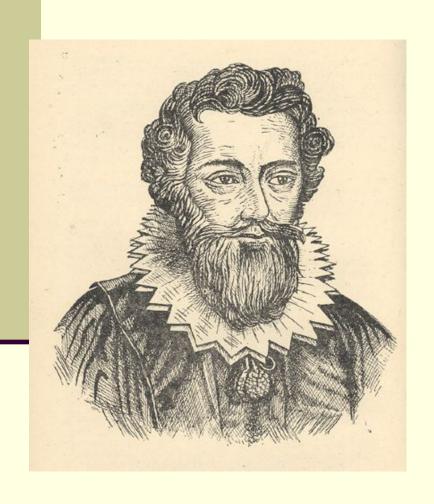

Квадратное уравнение вида

$$x^2 + p x + q = 0$$

называется приведённым!

```
Всякое квадратное уравнение ax^2+b \ x+c=0 делением обеих частей уравнения на а может быть приведено к виду x^2+p \ x+q=0. Например: 1) 2x^2-3x+5=0 /:2 nonyum \ x^2-1,5 \ x+2,5=0 2) 1/3x^2+2x-2/3=0 /:1/3 nonyum \ x^2+6x-2=0
```

Открытие


Теорема Виета

Сумма корней приведенного квадратного уравнения $x^2+p\ x+q=0$ равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

$$X_1 + X_2 = -P$$

$$X_1 \bullet X_2 = q$$

Впервые зависимость между корнями и коэффициентами квадратного уравнения установил знаменитый ученый Франсуа Виет (1540-1603)

Франсуа Виет был по профессии адвокатом и много лет работал советником короля.

В 1591 г. он ввел буквенные обозначения для коэффициентов при неизвестных в уравнениях, что дало возможность записать общими формулами корни уравнения и свойства. Его часто называют «Отцом алгебры».

Вейерштрасс

сказал, что нельзя быть математиком, не будучи поэтом в душе.

Нет формул важней для приведённого уравнения: -p — это сумма его корней, q — его корней произведение.

Уравнение	Дискриминант	Сумма корней	Произведение корней
1. $x^2 - 9x + 1 = 0$	D = 77	9	1
$2. x^2 + 8x + 10 = 0$	D = 24	- 8	10
3. $x^2 + 3x - 10 = 0$	D = 49	- 3	-10
4. $x^2 - 6x - 7 = 0$	D = 64	6	- 7
5. $x^2 + 3x + 5 = 0$	D = -11		

Проверка найденных корней квадратных уравнений.

1)
$$x^2 - 2x - 15 = 0$$

 $a=1$ $b=-2$ $c=-15$
 $D=b^2-4ac=4+60=64>0$ — два корня $x_1=(2+8)/2$ $x_2=(2-8)/2$ $x_1=5$ $x_2=-3$
По формулам Виета $x_1+x_2=2$ $x_1x_2=-15$ Проверяем: $5+(-3)=2$

 $5 \cdot (-3) = -15$

Проверка найденных корней квадратных уравнений.

2)
$$y^2 - 4y - 96 = 0$$

 $a=1$ $b=-4$ $c=-96$
 $D=b^2-4ac=16+384=400>0$ — два корня $y_1=(4+20)/2$ $y_2=(4-20)/2$ $y_1=12$ $y_2=-8$
По формулам Виета $y_1+y_2=4$ $y_1y_2=-96$
Проверяем: $-8+12=4$ $-8\cdot 12=-96$

Составляем квадратное уравнение

Пусть
$$X_1 = 2$$
, $X_2 = -6$ — корни квадратного уравнения

$$X_1 + X_2 = -4$$
, $X_1 \cdot X_2 = -12$, тогда по теореме Виета

$$X^2 + 4X - 12 = 0$$
 — искомое квадратное уравнение

Один из корней уравнения X^2 - 19X + 18 = 0 равен 1. Найти его второй корень

Пусть $X_1 = 1$, тогда по теореме Виета

$$X_1 + X_2 = 19, X_1 \cdot X_2 = 18, \text{ r.e.}$$

$$1 + X_2 = 19, 1 \cdot X_2 = 18$$

Значит $X_2 = 18$

Один из корней уравнения $28X^2 + 23X - 5 = 0$ равен -1. Найти его второй корень

Запишем приведённое квадратное уравнение:

$$X^2 + 23/28*X - 5/28 = 0$$

Пусть $X_1 = -1$, тогда по теореме Виета

$$X_1 + X_2 = -23/28$$
 $X_1 \cdot X_2 = -5/28$, T.e.

$$-1 + X_2 = -23/28$$
, $-1 \cdot X_2 = -5/28$

Значит
$$X_2 = 5/28$$

В.В. Маяковский

«Если звёзды зажигают, значит, это кому-нибудь нужно»

Зачем нужна теорема Виета?

С её помощью можно:

- 1) найти сумму и произведение корней квадратного уравнения, не решая его
- 2) зная один корень, найти другой
- 3) определить знаки корней уравнения
- 4) проверить, правильно ли найдены корни уравнения

Теорема, обратная теореме Виета

Если числа p, q,
$$x_{1,}^{} X_{2}^{}$$
 таковы, что $X_{1}^{} + X_{2}^{} = -p$ u $X_{1}^{} \cdot X_{2}^{} = q$ то $X_{1}^{} u$ $X_{2}^{} - \kappa ophu$ уравнения $x^{2} + p x + q = 0$

Применение теоремы, обратной теореме Виета

Угадываем корни

$$X^2 + 3X - 10 = 0$$

знаки

$$X_1 + X_2 = -3$$
, значит больший по модулю корень - отрицательный

Подбором находим корни: $X_1 = -5$, $X_2 = 2$

Решите сами!

- 1) № 450 (2,4,6)
- 2) № 455 (2,4)
- 3) № 456 (2,4,6)

Дома: п.29, знать ответы на вопросы 1-7 стр.183

Чосер – английский поэт средних веков, сказал:

"Посредством уравнений, теорем, Я уйму разрешил проблем".

Выучив теорему Виета, вы тоже разрешите для себя уйму всяких проблем.

Спасибо за урок, успехов в учёбе!