Метод координат как универсальный способ решения заданий С-2 ЕГЭ по математике

Общий алгоритм для решения С2 методом координат

1. Ввести

прямоугольную систему координат (выбор зависит от

o6₽**₽**

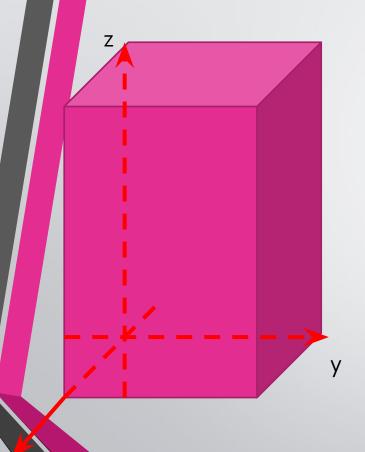
2. Выписать координаты всех необходимых точек

3. Вычислить координаты необходимых векторов.

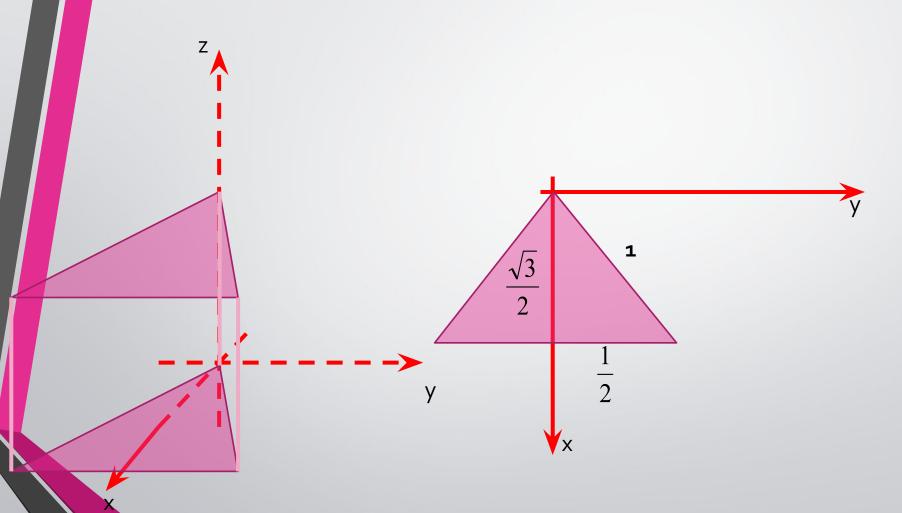
4. Применить формулу, выполнить вычисления.

5. Записать ответ.

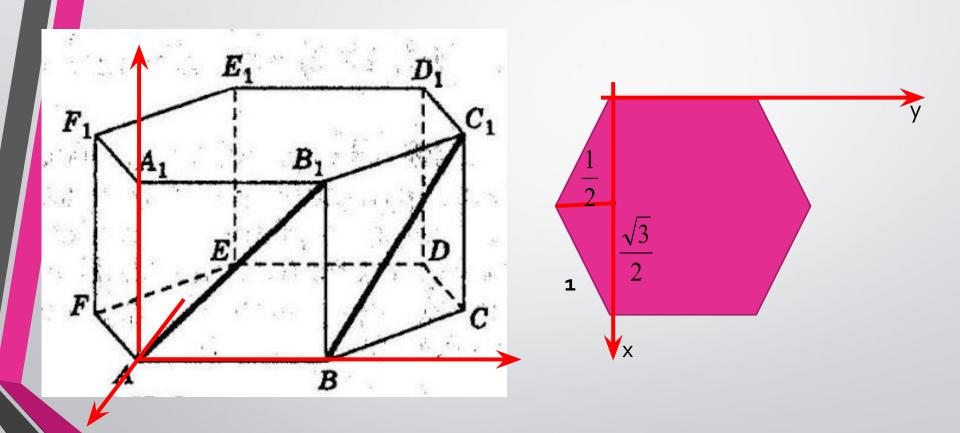
Примеры «удобного» задания системы координат для разных объектов Прямоугольный параллелепипед



Правильная треугольная призма

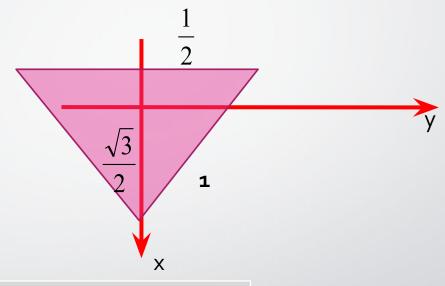


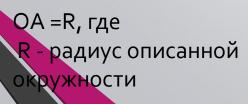
Правильная шестиугольная призма



Правильная пирамида

- 1. Начало координат в центре описанной (вписанной) около основания окружности
- 2. Ось Oz проходит по высоте пирамиды





$a = R\sqrt{3}$	в правильном треугольнике
a = R	в правильном шестиугольнике
$a = R\sqrt{2}$	в правильном четырехугольнике

Угол между прямыми (обозначим α)

<mark>Исп</mark>ользуем формулу:

$$\cos \alpha = \frac{|x_1 x_2 + y_1 y_2 + z_1 z_2|}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

Где

{x₁;y₁;z₁} – координаты направляющего вектора первой прямой {x₂;y₂;z₂} – координаты направляющего вектора второй прямой

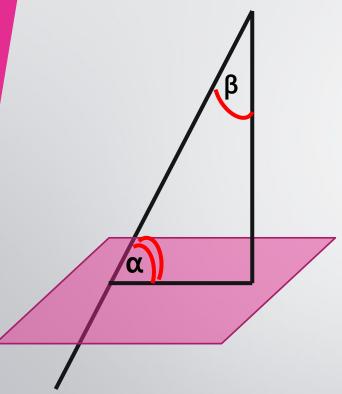
Так как угол между прямыми выбираем острый, то косинус положителен

К решению примера 1

К решению примера 2

угол между прямой и плоскостью

α - угол между прямой и плоскостью



$$\sin \alpha = \sin(90 - \beta) = \cos \beta$$

β – угол между прямой и перпендикуляром к плоскости

Чтобы найти синус угла между прямой и плоскостью можно найти косинус угла между прямой и перпендикуляром к плоскости

Уравнение плоскости

(1) ax + by + cz + d = 0 - общий вид уравнения плоскости

$$\mathbf{e}_{\mathbf{c}_{\mathbf{K}}}$$
тор $\vec{n}\{a;b;c\}\perp$ плоскости

Ч<mark>ер</mark>ез три точки проходит плоскость и притом только одна

Т.к. точки принадлежат плоскости, то их координаты удовлетворяют уравнению (1)

Составляем и решаем систему уравнений

Находим коэффициенты a, b, c, d

Угол между плоскостями

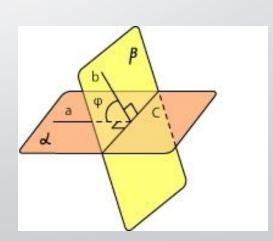
Угол между плоскостями равен углу между перпендикулярами к этим плоскостям

$$a_1 x + b_1 y + c_1 z + d_1 = 0 - y p a в нение _ плоскости _ α
 $a_2 x + b_2 y + c_2 z + d_2 = 0 - y p a в нение _ плоскости _ $\beta$$$$

$$\overrightarrow{m}\{a_1; b_1; c_1\} \perp \alpha$$

$$\overrightarrow{n}\{a_2; b_2; c_2\} \perp \beta$$

$$\cos(\overrightarrow{m}; n) = \frac{|a_1 a_2 + b_1 b_2 + c_1 c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$



Расстояние от точки до прямой

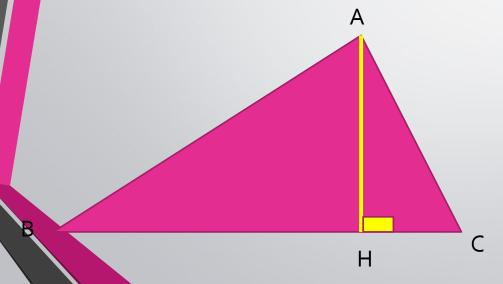
 $\Pi_{\text{уст}}$ ь АН — искомое расстояние.

$$S_{\Delta ABC} = \frac{1}{2}BC \cdot AH$$

$$AH = \frac{2S_{\Delta}}{BC}$$

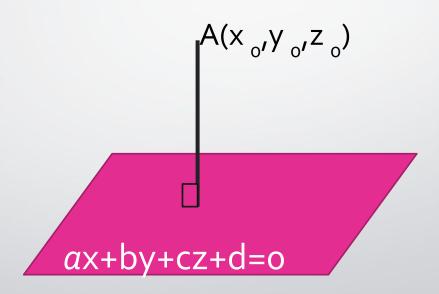
$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$P = \frac{a+b+c}{2}$$



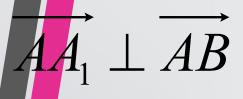
Расстояние от точки до плоскости

$$\rho = \frac{\left| ax_0 + by_0 + cz_0 + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$



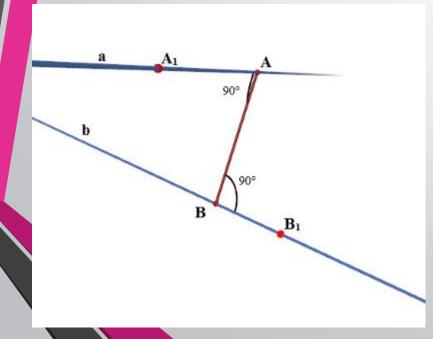
Расстояние между скрещивающимися прямыми

Способ решения А.Правдина – учителя математики Нижегородской области



$$BB_1 \perp AB$$

Toчки A_1 и B_1 выбираем любые



$$\overrightarrow{AB} = \overrightarrow{AA_1} + \overrightarrow{A_1B_1} + \overrightarrow{B_1B}$$

а – направляющий _ вектор _ а

 \dot{b} – направляющий $_$ вектор $_b$

$$\overrightarrow{AA_1} = \overrightarrow{xa}$$

$$\overrightarrow{B_1B} = y\overrightarrow{b}$$

$$\begin{cases} \overrightarrow{a} \cdot \overrightarrow{AB} = 0 \\ \overrightarrow{b} \cdot \overrightarrow{AB} = 0 \end{cases}$$

Находим х и у, затем длину АВ