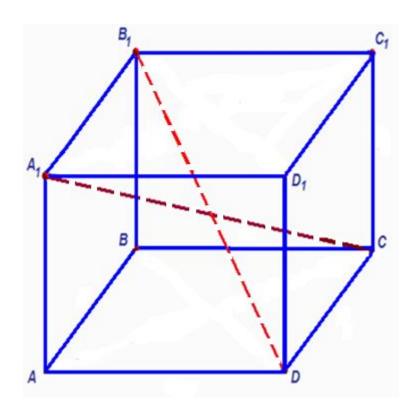
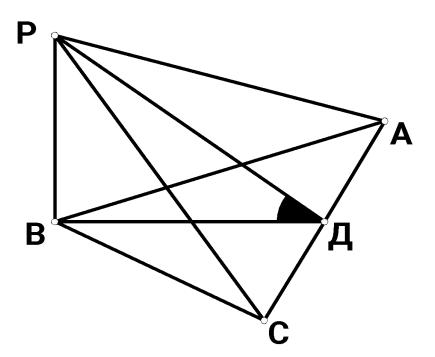

ПОПОТОВКА К ЕГО.

Сегодня на уроке.

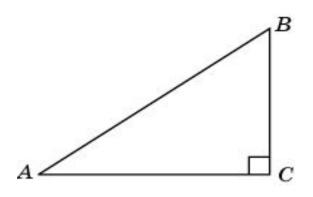

- 1) Целеполагание.
- 2) Геометрическая разминка.
- 3) Повторим планиметрию. Решение задач из ЕГЭ(часть В).
- 4) Решение задач из ЕГЭ(часть С).
- 5) Домашнее задание.
- 6) Подведение итогов.



AB=BC=17см, AC=30см

Найти: ВН, S∆

РАВС - пирамида; AB = BC, D – середина отрезка AC, прямая PB перпендикулярна плоскости ABC.


Доказать, что угол PDB – линейный угол двугранного угла с ребром AC.

B

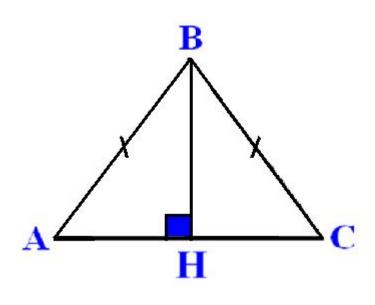
В треугольнике ABC угол C равен 90° , $\operatorname{tg} A = \frac{4\sqrt{33}}{33}$,

4

BC = 8. Найдите AB.

Решение

1.
$$tg A = \frac{BC}{AC}$$
,


$$AC = \frac{BC}{tg A} = \frac{8}{\frac{4\sqrt{33}}{33}} = \frac{66}{\sqrt{33}} = 2\sqrt{33}$$

2. По теореме Пифагора

находим AB =
$$\sqrt{(2\sqrt{33})^2 + 8^2}$$
 = $\sqrt{196}$ = 14

Ответ: 14

В равнобедренном треугольнике ABC с основанием ACбоковая сторона AB равна 20, а $\cos A = \frac{2\sqrt{6}}{5}$. Найдите высоту, проведенную к основанию.

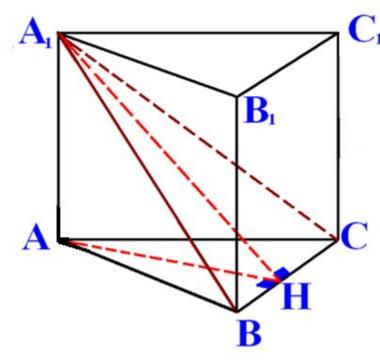
Решение

Проведем высоту ВН, ДАВН прямоугольный $\cos A = \frac{AH}{AR}$.

$$\cos A = \frac{An}{AB}$$
.

Имеем AH = AB
$$\cos A = 8\sqrt{6}$$
.

По теореме Пифагора


находим BH =
$$\sqrt{20^2 - (8\sqrt{6})^2} = 4$$
.

Ответ: 4

C

Сторона основания правильной треугольной призмы $ABCA_1B_1C_1$ равна 2, а диагональ боковой грани равна $\sqrt{5}$. Найдите угол между плоскостью A_1BC и плоскостью основания призмы.

2

Решение

Н середина ребра ВС.

△АВС равносторонний, а

▲ А₁ВС – равнобедренный,

отрезки АН и А1Н перпендикулярны ВС .

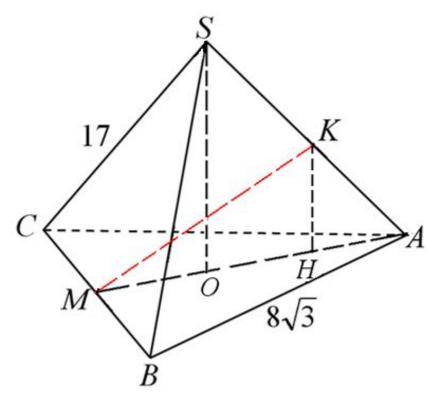
 $\angle A_1HA$ — линейный угол двугранного угла с гранями $BCA\ u\ BCA_1$.

Из $\triangle A_1 AB : AA_1 = 1$.

Из $\triangle AHB$: $AH = \sqrt{3}$.

Из ∆ НАА1 найдем:

$$tg \angle A_1HA = \frac{AA_1}{AH} = \frac{1}{\sqrt{3}}$$


Искомый угол равен 30°.

Ответ: 30°

В правильной треугольной пирамиде SABC с основанием ABC известны ребра; SC = 17. Найдите угол, образованный

плоскостью основания и прямой, проходящей через середины

ребер AS и BC.

Решение

SO – высота, О ϵ AM KH | |SO, KH \perp (ABC), KH \perp AM, MH – проекция МК на (ABC) \angle КМН – угол между прямой МК и (ABC). Δ SOA KH – средняя линия, OH = HA CM=MB= $4\sqrt{3}$.

AM =
$$\sqrt{AB^2 - MB^2} = \sqrt{(8\sqrt{3})^2 - (4\sqrt{3})^2} = 12$$

AH =
$$\frac{1}{3}$$
 AM=4, MH = $\frac{2}{3}$ AM=8

$$AK = \frac{1}{2} SA = \frac{17}{2}$$

$$KH = \sqrt{AK^2 - AH^2} = \sqrt{8,5^2 - 4^2} = 7,5$$

Из
$$\triangle$$
 МКН tg \angle КМН = $\frac{KH}{MH} = \frac{7.5}{8} = \frac{15}{16}$.

$$\angle KMH = arctg \frac{15}{16}$$
.

Домашнее задание

Сборник заданий В4: № 2347,2395

Сборник заданий С2:

тр. работа 2 – №4, тр.работа3 – №3

Человек...родился быть господином, царём природы, но мудрость, с которой он должен править... не дана ему от рождения: она приобретается учением.

Н.И. Лобачевский

Спасибо за урок