Об авторах

Автор презентации:

• Котов Александр Ильич

Оформление презентации:

• Котова Нина Александровна

Регрессионный анализ Условные обозначения.

 $\hat{\overline{x}}$ - выборочное среднее.

 $\hat{\overline{S}}^{\,\,2}$ - выборочная дисперсия.

 $\hat{\overline{S}}_{_a}^{-2}$ - исправленная (несмещенная) выборочная дисперсия.

 $\hat{\overline{K}}_{v_{\!\!J}}$ - выборочная ковариация.

 $\hat{\overline{K}}_{v_{-a}}$ - исправленная (несмещенная) выборочная ковариация.

 $\hat{arepsilon}_{m{w}}$ -выборочный коеффициент корреляции.

Регрессионный анализ

До сих пор Вы изучали способы обработки выборочной совокупности такой, о которой можно было бы сказать: Выборочная совокупность представлена в виде результатов и экспериментов, в каждом из которых реализовывалось значение какой-то случайной величины Х. В результате получалась выборка объема n: $X_1, X_2, X_3, \ldots X_n$

Пусть теперь в эксперименте получается реализация случайного вектора — системы случайных величин (X,Y). В результате и экспериментов получается выборочная совокупность объема и:

Пример №1 (общий вид):

$$(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots (x_n, y_n)$$

Пример №1(частный случай):

- X: -1.75 -1.63 -1.86 -1.78 -1.69 -1.70 -1.72
- Y: 2.36 2.42 2.63 2.50 2.68 2.51 2.49

В этом примере, очевидно, объем выборки n=7.

Заметим, что в выборке нет одинаковых пар, и, даже по отдельности значения X и Y не повторяются. Можно предположить, что мы имеем дело с системой непрерывных случайных величин.

Пример №2: Результаты наблюдений сведены в таблицу:

	j	1	2	3	4	5
j	× /-	2	4	6	8	10
1	3	8	5	1	0	0
2	6	4	10	5	2	1
3	9	2	6	10	7	2
4	12	0	1	5	12	8

В примере 2, очевидно, объем выборки п, равный сумме частот по всей таблице: n=89 (проверьте!). Случайный вектор практически достоверно представляет собой систему дискретных случайных величин. В не закрашенной части таблицы приведены частоты mij. Например, значение случайного вектора (X=10,Y=12) – (строка j=4, столбец i=5) повторяется mij=8 раз в проведенных 89 наблюдениях.

Пример №2(продолжение). Вычислим относительные частоты ωij= mij/n. В результате получим аналогичную таблицу относительных частот:

	i	1	2	3	4	5
j	$\not F$	2	4	6	8	10
1	3	0,0899	0,0562	0,0112	0	0
2	6	0,0449	0,1124	0,0562	0,0225	0,0112
3	9	0,0225	0,0674	0,1124	0,0787	0,0225
4	12	0	0,0112	0,0562	0,1348	0,0898

Сумма относительных частот по всей таблице равна единице. Не путать с таблицей распределения систем дискретных случайных величин!

Пример №3: В случае, если мы имеем дело с системой непрерывных случайных величин, и объем выборки достаточно большой (сотни), то удобно строить интервальную таблицу. На следующем слайде приводится интервальная таблица, полученная обработкой выборки объема n=1423, аналогичной примеру №1. Размахи выборки по случайным величинам Х и Y разбиты на ni=10 и nj=12 интервалов соответственно. В таблице указаны середины соответствующих интервалов.

Bнимание: $n \neq ni \cdot nj$

Таблица частот для середин интервалов dx=0,2 dy=0,5											
	i	1	2	3	4	5	6	7	8	9	10
j	X	0,1	0,3	0,5	0,7	0,9	1,1	1,3	1,5	1,7	1,9
1	2,5	2	4	7	13	20	13	7	4	2	. 1
2	3,5	3	5	9	15	20	15	9	5	3	2
3	4,5	5	8	12	17	20	17	12	8	5	4
4	5,5	9	12	15	19	20	19	15	12	9	7
5	6,5	15	17	19	20	20	20	19	17	15	13
6	7,5	20	20	20	20	20	20	20	20	20	20
7	8,5	15	17	19	20	20	20	19	17	15	13
8	9,5	9	12	15	19	20	19	15	12	9	7
9	10,5	5	8	12	17	20	17	12	8	5	4
10	11,5	3	5	9	15	20	15	9	5	3	2
11	12,5	2	4	7	13	20	13	7	4	2	1
12	13,5	2	3	5	12	20	12	5	3	2	1

Вычисление статистических оценок.

Если выборка представлена в форме примера №1, то можно воспользоваться формулами: (1)

$$\frac{\mathbb{X}}{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i} \qquad \overline{S}_{1}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \qquad \overline{S}_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$

$$\overline{K}_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})$$
Исправленным (несмещенным) оценкам припишем

индекс а:

$$\frac{\mathbb{Z}}{S^{2}}_{1_{-}a} = \frac{n}{n-1} \frac{\mathbb{Z}}{S_{1}^{2}} \qquad \frac{\mathbb{Z}}{S^{2}}_{2_{-}a} = \frac{n}{n-1} \frac{\mathbb{Z}}{S_{2}^{2}} \qquad \frac{\mathbb{Z}}{K_{xy_{-}a}} = \frac{n}{n-1} \frac{\mathbb{Z}}{K_{xy_{-}a}}$$

$$\frac{\mathbb{X}}{S_{1_{-}a}} = \sqrt{\frac{\mathbb{X}}{S_{1_{-}a}}} \qquad \frac{\mathbb{X}}{S_{2_{-}a}} = \sqrt{\frac{\mathbb{X}}{S_{2_{-}a}}} \qquad \frac{\mathbb{X}}{r_{xy}} = \frac{\mathbb{X}}{\sqrt{\frac{\mathbb{X}}{S_{1_{-}a}}^2 \mathbb{X}_{2_{-}a}^2}} = \frac{\mathbb{X}}{\sqrt{\frac{\mathbb{X}}{S_1}^2 \mathbb{X}_2^2}} = \frac{\mathbb{X}}{S_1} \frac{\mathbb{X}}{a} \frac{\mathbb{X}}{S_2} = \frac{\mathbb{X}}{S_1} \frac{\mathbb{X}}{a} \frac{\mathbb{X}}{S_2} = \mathbb{X}}{S_1} \frac{\mathbb{X}}{a} \frac{\mathbb{X}}{S_2} = \mathbb{X}}$$

По вышеприведенным формулам (1), (2) следует вычислять статистические оценки и в случаях иного представления выборки, если, конечно, информация в форме примера №1 не утеряна. Именно в этой форме наиболее удобно проводить вычисления средствами EXCEL. Указанные формулы легко вводить в ячейки EXCEL. Кроме того, функции СРЗНАЧ, ДИСП, КОВАР избавляют даже и от этой необходимости.

Для выборки, представленной в примере№2 удобно использовать такие формулы:

$$\frac{\mathbb{X}}{\overline{x}} = \sum_{i=1}^{ni} x_i \sum_{j=1}^{j=nj} \omega_{ij} \qquad \overline{y} = \sum_{j=1}^{nj} y_j \sum_{i=1}^{i=ni} \omega_{ij} \qquad \overline{S}_1^2 = \sum_{i=1}^{ni} ((x_i - \overline{x})^2 \sum_{j=1}^{j=nj} \omega_{ij})$$

$$\frac{\mathbb{X}}{\overline{S}_2^2} = \sum_{i=1}^{nj} ((y_j - \overline{y})^2 \sum_{i=1}^{i=ni} \omega_{ij}) \qquad \overline{K}_{xy} = \sum_{i=1}^{i=ni} \sum_{j=1}^{j=nj} \omega_{ij} (x_i - \overline{x}) (y_j - \overline{y})$$

Исправленные оценки пересчитываются по выборочным оценкам по тем же формулам что и ранее.

Впимание! Формулы (3), приведенные для примера №2 — это не другие, а ТЕ ЖЕ САМЫЕ формулы (1), что приведены для примера №1 Они выводятся одни из других, и дают идентичные результаты!

Для выборки, представленной в примере№3, если утеряна информация формы примера №1, следует использовать формулы (3), (2), предварительно создав такую же таблицу, но для относительных частот. При этом роль значений хі, уі играют середины соответствующих интервалов. В этом случае выборочные оценки вычисляются приближенно!

Формулы (1) г (3) не совпадают в этом случае!

Регрессионный анализ. Цель и задачи.

Целью регрессионного анализа является выявление характера связи случайных величин, входящих в систему случайных величин методами математической статистики. Существо причинных связей невозможно выявить статистическими методами, и это не является целью регрессионного анализа.

Регрессионный анализ. Цель и задачи (продолжение).

- Как невозможно найти точно математическое ожидание по выборке (а только его оценку в виде выборочного среднего) так и невозможно точно найти линии регрессии по выборочной совокупности в приведенных примерах.
- Однако приближенное нахождение линий регрессии является задачей регрессионного анализа.
- Зависимость условной средней одной величины от соответствующих значений другой величины называется корреляционной связью, а уравнение связи $y_k(x) = f(x)$ уравнением регрессии у на х.

Вычисление условных средних

Если выборка случайного вектора представлена в форме примера №2 или №3, и объем выборки достаточно большой, то возможно вычислить условные средние у(хі) по формуле:

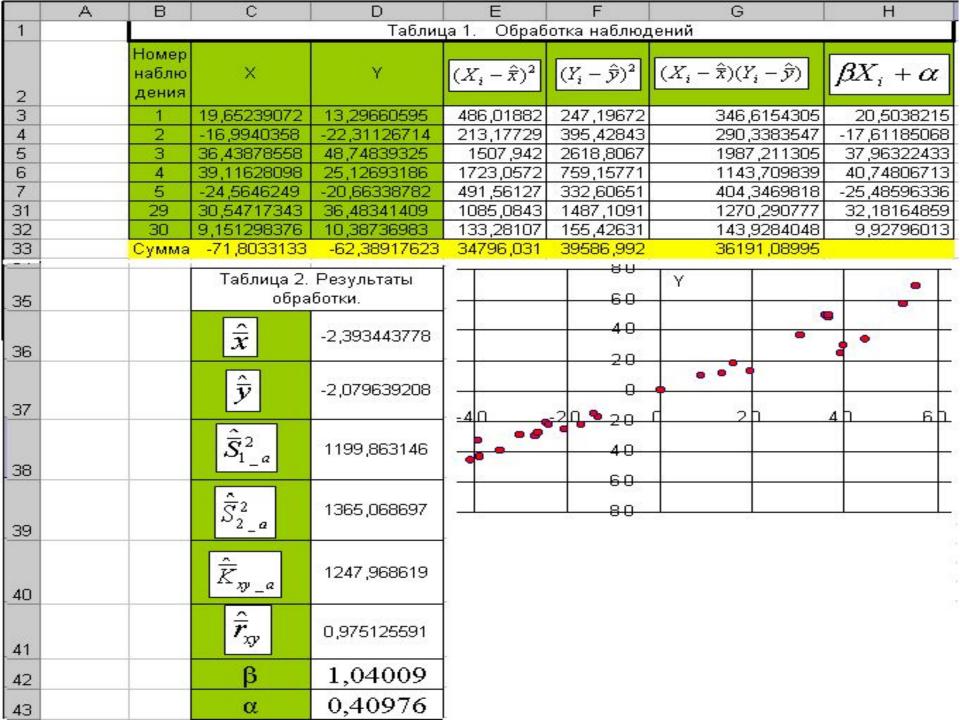
$$y(x_i) = \frac{\sum_{j=1}^{n_j} y_j \omega_{ij}}{\omega_i}, \quad z \partial e \quad \omega_i = \sum_{j=1}^{n_j} \omega_{ij}$$
 (4)

Корреляционное поле.

- Корреляционным полем называется диаграмма, изображающая совокупность значений двух признаков.
- Средствами EXCEL легко получить корреляционное поле, которое по сути дела является просто точечной диаграммой.
- По виду корреляционного поля и, используя другую информацию о системе случайных величин (если она известна), выбирается вид уравнения регрессии (этап спецификации).

Линейное уравнение парной регрессии.

- Пример №4: В результате n=30 экспериментов получена таблица и построено корреляционное поле.
- По виду корреляционного поля делаем вывод о линейной зависимости Y от x, то есть считаем, что систематическая часть у: =α+βx. Проводим вычисления в среде EXCEL:
- На следующих слайдах показан лист EXCEL с результатами вычислений и с формулами:



Формулы при вводе выглядят так:

	В	C	D	E	F	G			
1	Таблица 1. Обработка наблюдений								
2	Номер наблюд ения	X	Y	$(X_i - \hat{\overline{x}})^2$	$(Y_i - \hat{\bar{y}})^2$	$(X_i - \hat{\overline{x}})(Y_i - \hat{\overline{y}})$			
3	1	19,652	13,296	=(C3-\$D\$36)^2	=(D3-\$D\$37)^2	=(C3-\$D\$36)*(D3-\$D\$37)			
4	2	-16,994	-22,311	=(C4-\$D\$36)^2	=(D4-\$D\$37)^2	=(C4-\$D\$36)*(D4-\$D\$37)			
5	3	36,438	48,748	=(C5-\$D\$36)^2	=(D5-\$D\$37)^2	=(C5-\$D\$36)*(D5-\$D\$37)			
6	4	39,116	25,126	=(C6-\$D\$36)^2	=(D6-\$D\$37)^2	=(C6-\$D\$36)*(D6-\$D\$37)			

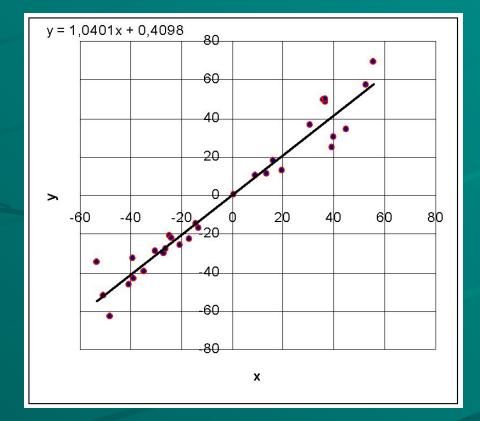
Метод наименьших квадратов дает следующие формулы для вычисления коэффициентов α и β:

$$\beta = \frac{\overline{K}_{xy}}{\overline{K}_{xy}} = \frac{\overline{K}_{xy_a}}{\overline{K}_{xy_a}} = \frac{\overline{r}_{xy}\overline{S}_{2_a}}{\overline{S}_{1_a}} \qquad \alpha = \frac{\overline{y} - \beta \overline{x}}{\overline{x}}$$

Вычисления по этим формулам приводят к линейной регрессии Y на х:

y=0.4098+1.0401*x

Если на точечной диаграмме выделить маркеры мышкой, встав на один из них, то можно через контекстное меню добавить линию тренда. При этом следует выбрать линейный тренд и задать «показывать уравнение на диаграмме». Получится такой график:



Литература.

- 1. Вентцель Е.С. Теория вероятностей. М. Наука, 1976.
- 2. Вентцель Е.С. Овчаров Л.А. Теория вероятностей и ее инженерные приложения. М. Наука, 1988.
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика. М.:Высш.шк.,2001
- <u>4. Гмурман В.Е. Руководство к решению задач</u> по теории вероятностей и математической статистике. М.:Высш.шк.,2001
- 5. Вентцель Е.С. Овчаров Л.А. Задачи и упражнения по теории вероятностей М.:Высш. шк.,2002
- 6. Курзенев В.А. Основы матеметической статистики для управленцев. СпБ, СЗАГС 2002.