Week Eight

Graphs and Multigraphs

- ► A graph G consists of two things:
	- \blacktriangleright (i) A set V = V(G) whose elements are called vertices, points, or nodes of G.
	- \blacktriangleright (ii) A set E = E(G) of unordered pairs of distinct vertices called edges of G.
- \blacktriangleright We denote such a graph by $G(V,E)$ when we want to emphasize the two parts of G.

Graphs and Multigraphs

- ► Vertices u and v are said to be adjacent or neighbors if there is an edge $e = \{u, v\}$.
- ► In such a case, u and v are called the endpoints of e, and e is said to connect u and v.
- ► Also, the edge e is said to be incident on each of its endpoints u and v.
- ► Graphs are pictured by diagrams in the plane in a natural way. Specifically, each vertex v in V is represented by a dot (or small circle), and each edge $e = \{v1, v2\}$ is represented by a curve which connects its endpoints v1 and v2

Multigraphs

- Consider the diagram on the left.
- ► The edges e4 and e5 are called multiple edges since they connect the same endpoints, and the edge e6 is called a loop since its endpoints are the same vertex.
- ► Such a diagram is called a multigraph; the formal definition of a graph permits neither multiple edges nor loops. Thus a graph may be defined to be a multigraph without multiple edges or loops

Degree of a Vertex

- \blacktriangleright The degree of a vertex v in a graph G, written deg (v), is equal to the number of edges in G which contain v, that is, which are incident on v.
- ► Since each edge is counted twice in counting the degrees of the vertices of G, we have the following simple but important result.
- Theorem 8.1: The sum of the degrees of the vertices of a graph G is equal to twice the number of edges in G.
- Consider, for example, the graph on the right.
- We have

 $deg(A) = 2$, $deg(B) = 3$, $deg(C) = 3$, $deg(D) = 2$.

- The sum of the degrees equals 10 which, as expected, is twice the number of edges.
- A vertex is said to be even or odd according as its degree is an even or an odd number. Thus A and D are even vertices whereas B and C are odd vertices.

Degree of a Vertex

- Theorem 8.1 also holds for multigraphs where a loop is counted twice toward the degree of its endpoint.
- \blacktriangleright For example, in the graph on the left we have deg(D) = 4 since the edge e6 is counted twice; hence D is an even vertex.
- ► A vertex of degree zero is called an isolated vertex.

Finite Graphs, Trivial Graphs

- ► A multigraph is said to be finite if it has a finite number of vertices and a finite number of edges.
- ► Observe that a graph with a finite number of vertices must automatically have a finite number of edges and so must be finite.
- ► The finite graph with one vertex and no edges, i.e., a single point, is called the trivial graph.
- ► Unless otherwise specified, you may assume that all the multigraphs shall be finite.

SUBGRAPHS, ISOMORPHICAND HOMEOMORPHIC GRAPHS

- ► Subgraphs
- Consider a graph $G = G(V,E)$. Agraph $H = H(V', E')$ is called a subgraph of G if the vertices and edges of H are contained in the vertices and edges of G, that is, if $V' ⊆ V$ and $E' ⊆ E$. In particular:
	- ► (i) A subgraph H(V',E') of G(V,E) is called the subgraph induced by its vertices V' if its edge set E' contains all edges in G whose endpoints belong to vertices in H.
	- ► (ii) If v is a vertex in G, then G − v is the subgraph of G obtained by deleting v from G and deleting all edges in G which contain v.
	- ► (iii) If e is an edge in G, then G − e is the subgraph of G obtained by simply deleting the edge e from G.

Isomorphic Graphs

- \blacktriangleright Graphs G(V,E) and G*(V*,E*) are said to be isomorphic if there exists a one-to-one correspondence f: $V \rightarrow V *$ such that $\{u,v\}$ is an edge of G if and only if $\{f(u), f(v)\}$ is an edge of G*.
- ► Normally, we do not distinguish between isomorphic graphs (even though their diagrams may "look different")

Homeomorphic Graphs

- Given any graph G, we can obtain a new graph by dividing an edge of G with additional vertices.
- ► Two graphs G and G* are said to homeomorphic if they can be obtained from the same graph or isomorphic graphs by this method.
- \blacktriangleright The graphs (a) and (b) on the left are not isomorphic, but they are homeomorphic since they can be obtained from the graph (c) by adding appropriate vertices.

PATHS

A path in a multigraph G consists of an alternating sequence of vertices and ►edges of the form

 $v_0, e_1, v_1, e_2, v_2, ..., e_{n-1}, v_{n-1}, e_n, v_n$

- where each edge e_i contains the vertices v_{i-1} and v_i (which appear on the \blacktriangleright sides of e_i in the sequence).
- The number n of edges is called the length of the path.
- The path is said to be closed if $Vo = Vn$. Otherwise, we say the path is from Vo to Vn or between Vo and Vn, or connects Vo to Vn.
- A simple path is a path in which all vertices are distinct. A path in which all \blacktriangleright edges are distinct will be called a trail.
- A cycle is a closed path of length 3 or more in which all vertices are distinct except Vo = Vn. A cycle of length k is called a k-cycle.

Paths

- ► Consider the following sequences:
- $\alpha = (P4, P1, P2, P5, P1, P2, P3, P6)$
- $B = (P4, P1, P5, P2, P6)$
- $\sim \gamma = (P4, P1, P5, P2, P3, P5, P6)$
- \blacktriangleright The sequence α is a path from P4 to P6; but it is not a trail since the edge {P1,P2} is used twice.
- \blacktriangleright The sequence β is not a path since there is no edge {P2,P6}
- \blacktriangleright The sequence γ is a trail since no edge is used twice; but it is not a simple path since the vertex P5 is used twice

Connectivity/Connected Components

- ► A graph G is connected if there is a path between any two of its vertices.The graph we just saw is connected, but the graph on the right is not connected since
- ► Suppose G is a graph. A connected subgraph H of G is called a connected component of G if H is not contained in any larger connected subgraph of G. It is intuitively clear that any graph G can be partitioned into its connected components. The graph on the right has three connected components, the subgraphs induced by the vertex sets ${A, \bar{C}, D}, {E, F}, \text{ and } {B}.$
- The vertex B is called an isolated vertex since B does not belong to any edge or, in other words, $deg(B) = \overline{0}$. B itself forms a connected component of the graph.

Distance and Diameter

- ► Consider a connected graph G. The distance between vertices u and v in G, written d(u,v), is the length of the shortest path between u and v.
- ► The diameter of G, written diam(G), is the maximum distance between any two points in G.
- For example, $d(A,F) = 2$ and $diam(G) = 3$

Cutpoints and Bridges

- ► Let G be a connected graph. A vertex v in G is called a cutpoint if G−v is disconnected.
- ► An edge e of G is called a bridge if G−e is disconnected. (Recall that G − e is the graph obtained from G by simply deleting the edge e).
- For example, the edge = ${D, F}$ is a bridge.
- ► Its endpoints D and F are necessarily cutpoints.

TRAVERSABLE AND EULERIAN GRAPHS

- A multigraph is said to be traversable if it "can be drawn without any breaks in the curve and without repeating any edges," (if there is a path which includes all vertices and uses each edge exactly once)
- ► Such a path must be a trail (since no edge is used twice) and will be called a traversable trail
- A graph G is called an Eulerian graph if there exists a *closed traversable trail*, called an Eulerian trail.
- Theorem 8.3 (Euler):
- A finite connected graph is Eulerian if and only if each vertex has even degree

Hamiltonian Graphs

- ► A Hamiltonian circuit in a graph G, is a closed path that visits every vertex in G exactly once. Such a closed path must be a cycle.
- ► If G does admit a Hamiltonian circuit, then G is called a Hamiltonian graph.
- ► Note that an Eulerian circuit traverses every edge exactly once, but may repeat vertices!
- ► Theorem 8.5: Let G be a connected graph with n vertices. Then G is Hamiltonian if $n \geq 3$ and $n/2 \leq deg(v)$ for each vertex v in G.

 (a) Hamiltonian and non-Eulerian

 (b) Eulerian and non-Hamiltonian

LABELED AND WEIGHTED GRAPHS

- ► A graph G is called a labeled graph if its edges and/or vertices are assigned data of one kind or another.
- ► In particular, G is called a weighted graph if each edge e of G is assigned a nonnegative number $w(e)$ called the weight or length of v.
- \blacktriangleright The weight (or length) of a path in such a weighted graph G is defined to be the sum of the weights of the edges in the path.
- ► One important problem in graph theory is to find a shortest path, that is, a path of minimum weight (length), between any two given vertices.
- ► For example, the length of a shortest path between P and Q is 14; one such path is (P,A1,A2,A5,A3,A6,Q)

COMPLETE, REGULAR,AND BIPARTITE GRAPHS

- ► A graph G is said to be complete if every vertex in G is connected to every other vertex in G. The complete graph with n vertices is denoted by Kn
- ► A graph G is regular of degree k or k-regular if every vertex has degree k. In other words, a graph is regular if every vertex has the same degree.
- ► A graph G is said to be bipartite if its vertices V can be partitioned into two subsets M and N such that each edge of G connects a vertex of M to a vertex of N.
- ► By a complete bipartite graph, we mean that each vertex of M is connected to each vertex of N; this graph is denoted by Km,n where m is the number of vertices in M and n is the number of vertices in N, and, for standardization, we will assume $m \leq n$

Trees

- A graph T is called a tree if T is connected and T has no cycles.
- A forest G is a graph with no cycles; hence the connected components of a forest G are trees. The tree consisting of a single vertex with no edges is called the degenerate tree.
- Consider a tree T. Clearly, there is only one simple path between two vertices of T; otherwise, the two paths would form a cycle. Also:
- (a) Suppose there is no edge $\{u,v\}$ in T and we add the edge $e = \{u, v\}$ to T. Then the simple path from u to v in T and e will form a cycle; hence T is no longer a tree.
- (b) On the other hand, suppose there is an edge $e = \{u, v\}$ in T, and we delete e from T. Then T is no longer connected (since there cannot be a path from u to v); hence T is no longer a tree.

Trees

- ► Theorem 8.6: Let G be a graph with n > 1 vertices. Then the following are equivalent:
- \blacktriangleright (i) G is a tree.
- (ii) G is a cycle-free and has $n 1$ edges.
- ► (iii) G is connected and has n − 1 edges.

Spanning Trees

► A subgraph T of a connected graph G is called a spanning tree of G if T is a tree and T includes all the vertices of G. Figure 8-18 shows a connected graph G and spanning trees T1, T2, and T3 of G.

Minimal Spanning Trees

- ► Suppose G is a connected weighted graph. That is, each edge of G is assigned a nonnegative number called the weight of the edge.
- ► Then any spanning tree T of G is assigned a total weight obtained by adding the weights of the edges in T. A minimal spanning tree of G is a spanning tree whose total weight is as small as possible.
- ► The following algorithms enable us to find a minimal spanning tree T of a connected weighted graph G where G has n vertices. (In which case T must have n − 1 vertices.)

Minimal Spanning Trees

Algorithm 8.2: The input is a connected weighted graph G with n vertices.

- **Step 1.** Arrange the edges of G in the order of decreasing weights.
- Step 2. Proceeding sequentially, delete each edge that does not disconnect the graph until $n-1$ edges remain.
- Step 3. Exit.

- Example:
- ► Find a minimal spanning tree of the weighted graph Q. Note that Q has six vertices, so a minimal spanning tree will have five edges.

Algorithm 8.2: The input is a connected weighted graph G with n vertices.

- **Step 1.** Arrange the edges of G in the order of decreasing weights.
- Proceeding sequentially, delete each edge that does not disconnect the graph until $n-1$ Step 2. edges remain.

Step 3. Exit.

- ► First we order the edges by decreasing weights, and then we successively delete edges without disconnecting Q until five edges remain.
- ► This yields the following data:

 AC BE CE BF Edges ΑE DF BD Weight 7 6 5. 8 3 Yes Yes Yes No No Yes Delete

 \blacktriangleright Thus the minimal spanning tree of Q which is obtained contains the edges BE, CE, AE, DF, BD **EXAMPLE 10** The spanning tree has weight 24

Minimal Spanning Trees

Algorithm 8.3 (Kruskal): The input is a connected weighted graph G with n vertices.

- **Step 1.** Arrange the edges of G in order of increasing weights.
- Step 2. Starting only with the vertices of G and proceeding sequentially, add each edge which does not result in a cycle until $n-1$ edges are added.

Step 3. Exit.

- Example:
- ► Find a minimal spanning tree of the weighted graph Q. Note that Q has six vertices, so a minimal spanning tree will have five edges.

Algorithm 8.3 (Kruskal): The input is a connected weighted graph G with n vertices.

- Step 1. Arrange the edges of G in order of increasing weights.
- Step 2. Starting only with the vertices of G and proceeding sequentially, add each edge which does not result in a cycle until $n-1$ edges are added.

Step 3. Exit.

- ► First we order the edges by increasing weights, and then we successively add edges without forming any cycles until five edges are included. This yields the following data:
- ► This yields the following data:

Edges B F CE AC BС Weight 8 Yes Yes Yes No Yes No Yes Add?

-
- Thus the minimal spanning tree of Q which is obtained contains the edges BD, AE, DF, CE, AF
- The spanning tree has weight 24

Planar Graphs

- ► A graph or multigraph which can be drawn in the plane so that its edges do not cross is said to be planar.
- ► Although the complete graph with four vertices K 4 is usually pictured with crossing edges as in (a), it can also be drawn with noncrossing edges as in (b)
- \blacktriangleright Hence K 4 is planar.
- ► Tree graphs form an important class of planar graphs. This section introduces our reader to these important graphs.

Maps, Regions

- ► A particular planar representation of a finite planar multigraph is called a map. We say that the map is connected if the underlying multigraph is connected. A given map divides the plane into various regions.
- ► Observe that four of the regions are bounded, but the fifth region, outside the diagram, is unbounded. Observe that the border of each region of a map consists of edges. Sometimes the edges will form a cycle, but sometimes not. For example, the borders of all the regions are cycles except for r3.
- ► However, if we do move counterclockwise around r 3 starting, say, at the vertex C, then we obtain the closed path (C, D, E, F, E, C) where the edge $\{E, F\}$ occurs twice.
- \blacktriangleright By the degree of a region r, written deg(r), we mean the length of the cycle or closed walk which borders r. We note that each edge either borders two regions or is contained in a region and will occur twice in any walk along the border of the region.

Maps, Regions

- ► Theorem 8.7: The sum of the degrees of the regions of a map is equal to twice the number of edges.
- ► Euler's Formula
- ► Euler gave a formula which connects the number V of vertices, the number E of edges, and the number R of regions of any connected map. Specifically:

► Theorem 8.8 (Euler): $V - E + R = 2$

Fig. The degrees of the regions of Fig. 8-22 are: $deg(r 1) = 3$, $deg(r 2) = 3$, deg(r 3) = 5, deg(r 4) = 4, deg(r 5) = 3. The sum of the degrees is 18, which, as expected, is twice the number of edges

Non-planar Graps

Theorem 8.10: (Kuratowski) ►

A graph is nonplanar if and only if \blacktriangleright it contains a subgraph homeomorphic to $K_{3,3}$ or K_5

 A_{1}

 \boldsymbol{B}

(b) \boldsymbol{K}_5

- **Adjacency Matrix** ►
- Suppose G is a graph with m vertices, and suppose the vertices have been ordered, say, V1, V2 , ..., Vm. Then the adjacency matrix $A = [a_{ij}]$ of the graph G is the $m \times m$ matrix defined by

 $a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ is adjacent to } v_j \\ 0 & \text{otherwise} \end{cases}$

 (a)

- Linked Representation of a Graph G ►
- G may be represented in memory by some type of linked representation, also called an adjacency structure, which is described below by means of an example.
- Observe that G may be defined by the table:
- This table may also be presented in the compact form

 $G = [A:B,D; B:A,C,D; C:B; D:A,B; E:\emptyset]$

- ► The linked representation of a graph G, which maintains G in memory by using its adjacency lists, will normally contain two files (or sets of records), one called the Vertex File and the other called the Edge File, as follows.
- ► (a) Vertex File: The Vertex File will contain the list of vertices of the graph G usually maintained by an array or by a linked list. Each record of the Vertex File will have the form

VERTEX NEXT-V PTR

- ► Here VERTEX will be the name of the vertex, NEXT-V points to the next vertex in the list of vertices in the Vertex File when the vertices are maintained by a linked list, and PTR will point to the first element in the adjacency list of the vertex appearing in the Edge File.
- ► The shaded area indicates that there may be other information in the record corresponding to the vertex.

► Edge File: The Edge File contains the edges of the graph G. Specifically, the Edge File will contain all the adjacency lists of G where each list is maintained in memory by a linked list. Each record of the Edge File will correspond to a vertex in an adjacency list and hence, indirectly, to an edge of G. The record will usually have the form

EDGE ADJ NEXT

Here:

- \sim (1) EDGE will be the name of the edge (if it has one).
- \sim (2) ADJ points to the location of the vertex in the Vertex File.
- \sim (3) NEXT points to the location of the next vertex in the adjacency list.
- We emphasize that each edge is represented twice in the Edge File, but each record of the file corresponds to a unique edge. The shaded area indicates that there may be other information in the record corresponding to the edge.

► List the vertices in the order they appear in memory:

 \blacktriangleright Since START = 4, the list begins with the vertex D. The NEXT-V tells us to go to $1(B)$, then $3(F)$, then $5(A)$, then $8(E)$, and then $7(C)$; that is, D, B, F, A, E, C

- \blacktriangleright Find the adjacency list adj(v) of each vertex v of G
- ► Here $adj(D) = [5(A), 1(B), 8(E)].$
- \blacktriangleright Specifically, PTR[4(D)] = 7 and ADJ[7] $= 5(A)$ tells us that adj(D) begins with A.
- \blacktriangleright Then NEXT[7] = 3 and ADJ[3] = 1(B) tells us that B is the next vertex in adj(D).
- \blacktriangleright Then NEXT[3] = 10and ADJ[10] = 8(E) tells us that E in the next vertex in $adj(D)$.
- \blacktriangleright However, NEXT[10] = 0 tells us that there are no more neighbors of D.

GRAPH ALGORITHMS

- This section discusses two important graph algorithms which systematically examine the vertices and edges of a graph G.
- ► One is called a depth-first search (DFS) and the other is called a breadth-first search (BFS).
- ► Any particular graph algorithm may depend on the way G is maintained in memory. Here we assume G is maintained in memory by its adjacency structure. Here is our test graph G (we assume the vertices are ordered alphabetically)

GRAPH ALGORITHMS

- ► During the execution of our algorithms, each vertex (node) N of G will be in one of three states, called the status of N, as follows:
	- \triangleright STATUS = 1: (Ready state) The initial state of the vertex N.
	- \triangleright STATUS = 2: (Waiting state) The vertex N is on a (waiting) list, waiting to be processed.
	- ► STATUS = 3: (Processed state) The vertex N has been processed.
- The waiting list for the depth-first seach (DFS) will be a (modified) STACK (which we write horizontally with the top of STACK on the left), whereas the waiting list for the breadth-first search (BFS) will be a QUEUE.
- The general idea behind a depth-first search beginning at a starting vertex A is as follows.
- ► First we process the starting vertex A. Then we process each vertex N along a path P which begins at A; that is, we process a neighbor of A, then a neighbor of a neighbor, and so on.
- ► After coming to a "dead end," that is to a vertex with no unprocessed neighbor, we backtrack on the path P until we can continue along another path P'. And so on.
- The backtracking is accomplished by using a STACK to hold the initial vertices of future possible paths. We also need a field STATUS which tells us the current status of any vertex so that no vertex is processed more than once.
- Algorithm 8.5 (Depth-first Search): This algorithm executes a depth-first search on a graph G beginning with a starting vertex A .
- Initialize all vertices to the ready state ($STATUS = 1$). Step 1.
- Step 2. Push the starting vertex Λ onto STACK and change the status of Λ to the waiting state $(STATUS = 2)$.
- Repeat Steps 4 and 5 until STACK is empty. Step 3.
- Pop the top vertex N of STACK. Process N, and set STATUS $(N) = 3$, the processed state. Step 4.
- Step 5. Examine each neighbor J of N .
	- If STATUS $(J) = 1$ (ready state), push J onto STACK and reset STATUS $(J) = 2$ (a) (waiting state).
	- (b) If STATUS $(J) = 2$ (waiting state), delete the previous J from the STACK and push the current J onto STACK.
	- (c) If STATUS $(J) = 3$ (processed state), ignore the vertex J. [End of Step 3 loop.]

Exit. Step 6.

DFS

- ► During the DFS algorithm, the first vertex N in STACK is processed and the neighbors of N (which have not been previously processed) are then pushed onto STACK
- ► Initially, the beginning vertex A is pushed onto STACK. The following shows the sequence of waiting lists in STACK and the vertices being processed
- ► The general idea behind a breadth-first search beginning at a starting vertex A is as follows.
- ► First we process the starting vertex A. Then we process all the neighbors of A. Then we process all the neighbors of neighbors of A. And so on.
- ► Naturally we need to keep track of the neighbors of a vertex, and we need to guarantee that no vertex is processed twice. This is accomplished by using a QUEUE to hold vertices that are waiting to be processed, and by a field STATUS which tells us the current status of a vertex.

BFS

- ► Let G be a complete weighted graph. (We view the vertices of G as cities, and the weighted edges of G as
- ► the distances between the cities.) The "traveling-salesman" problem refers to finding a Hamiltonian circuit for G of minimum weight.
- ► First we note the following theorem:
- ► Theorem 8.13: The complete graph K n with n ≥ 3 vertices has H = (n − 1)!/2 Hamiltonian circuits (where we do not distinguish between a circuit and its reverse).

- ► Consider the complete weighted graph G in Fig. 8-35(a). It has four vertices, A, B, C, D.
- \blacktriangleright By the previous theorem it has H = 3!/2 = 3 Hamiltonian circuits. Assuming the circuits begin at the vertex A, the following are the three circuits and their weights:
- $|ABCDA| = 3 + 5 + 6 + 7 = 21$
- $|ACDBA| = 2 + 6 + 9 + 3 = 20$
- $|ACBDA| = 2 + 5 + 9 + 7 = 23$

- ► We solved the "traveling-salesman problem" for the weighted complete graph by listing and finding the weights of its three possible Hamiltonian circuits. However, for a graph with many vertices, this may be impractical or even impossible.
- ► For example, a complete graph with 15 vertices has over 40 million Hamiltonian circuits. Accordingly, for circuits with many vertices, a strategy of some kind is needed to solve or give an approximate solution to the traveling-salesman problem.
- We discuss one of the simplest algorithms here.
- ► Nearest-NeighborAlgorithm
- ► The nearest-neighbor algorithm, starting at a given vertex, chooses the edge with the least weight to the next possible vertex, that is, to the "closest" vertex. This strategy is continued at each successive vertex until a Hamiltonian circuit is completed.

- ► Starting at P, the first row of the table shows us that the closest vertex to P is S with distance 15. The fourth row shows that the closest vertex to S is Q with distance 12. The closest vertex to Q is R with distance 11. From R, there is no choice but to go to T with distance 10. Finally, from T, there is no choice but to go back to P with distance 20. Accordingly, the nearest-neighbor algorithm beginning at P yields the following weighted Hamiltonian circuit:
- $\text{PSQRTP} = 15 + 12 + 11 + 10 + 20 =$ 68

- \triangleright Starting at Q, the closest vertex is R with distance 11; from R the closest is T with distance 10; and from T the closest is S with distance 13. From S we must go to P with distance 15; and finally from P we must go back to Q with distance 18.
- ► Accordingly, the nearest-neighbor algorithm beginning at Q yields the following weighted Hamiltonian circuit:
- $|QRTSPQ| = 11 + 10 + 13 + 15 + 18$ $= 67$

Questions?

-
-
-
-
-
-
-
-
-
- -
- -
-
- -
-
- -
	-
	-
-
-
- -
-
- - -
		-
		-
	-
-
-
-
-
-
- -
-
- -
- -
-
-
-
-
-
- -
	-
	-
-
-
-
- - -
-
-
- -
	-
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
- -