Week Eight




Graphs and Multigraphs

- A graph G consists of two things:

- (i) Aset V = V(G) whose elements are called vertices, points, or nodes of G.

- (i) Aset E = E(G) of unordered pairs of distinct vertices called edges of G.

-~ We denote such a graph by G(V,E) when we want to emphasize the two parts
of G.




Graphs and Multigraphs

- Vertices u and v are said to be
adjacent or neighbors if there is an
edge e = {u,v}.

- In such a case, u and v are called the
endpoints of e, and e is said to
connect u and v.

- Also, the edge e is said to be incident
on each of its endpoints u and v.

- Graphs are pictured by diagrams in
the plane in a natural way.
Specifically, each vertex v in V is
represented by a dot (or small circle),
and each edge e = {v1, v2} is
represented by a curve which
connects its endpoints v1 and v2




Multigraphs

Consider the diagram on the left.

The edges e4 and eb are called
multiple edges since they connect
the same endpoints, and the edge
eb6 is called a loop since its
endpoints are the same vertex.

Such a diagram is called a
multigraph; the formal definition
of a graph permits neither multiple
edges nor loops. Thus a graph may
be defined to be a multigraph
without multiple edges or loops



Degree of a Vertex

- The degree of a vertex v in a graph G, written
deg (v), is equal to the number of edges in G
which contain v, that is, which are incident on
V.

- Since each edge is counted twice in counting
the degrees of the vertices of G, we have the
following simple but important result.

~ Theorem 8.1: The sum of the degrees of the
vertices of a graph G is equal to twice the
number of edges in G.

- Consider, for example, the graph on the right.
- We have
deg(A) = 2, deg(B) = 3, deg(C) = 3, deg(D) = 2.

- The sum of the degrees equals 10 which, as
expected, is twice the number of edges.

- Avertex is said to be even or odd according as
its degree is an even or an odd number. Thus A
and D are even vertices whereas B and C are
odd vertices.




Degree of a Vertex

-~ Theorem 8.1 also holds for
multigraphs where a loop is
counted twice toward the degree
of its endpoint.

- For example, in the graph on the
left we have deg(D) = 4 since the
edge e6 is counted twice; hence D
is an even vertex.

- Avertex of degree zero is called an
isolated vertex.




Finite Graphs, Trivial Graphs

- A multigraph is said to be finite if it has a finite number of vertices and a
finite number of edges.

- Observe that a graph with a finite number of vertices must automatically
have a finite number of edges and so must be finite.

- The finite graph with one vertex and no edges, i.e., a single point, is called
the trivial graph.

- Unless otherwise specified, you may assume that all the multigraphs shall be
finite.




SUBGRAPHS, ISOMORPHICAND
HOMEOMORPHIC GRAPHS

- Subgraphs

- Consider a graph G = G(V,E).Agraph H = H(V’,E’) is called a subgraph of G if
the vertices and edges of H are contained in the vertices and edges of G, that
is, if VV € Vand E’ € E. In particular:

- (i) Asubgraph H(V’,E’) of G(V,E) is called the subgraph induced by its vertices V’ if
its edge set E’ contains all edges in G whose endpoints belong to vertices in H.

- (i) If vis a vertex in G, then G - v is the subgraph of G obtained by deleting v from
G and deleting all edges in G which contain v.

- (iii) If e is an edge in G, then G - e is the subgraph of G obtained by simply deleting
the edge e from G.




Isomorphic Graphs

>

Graphs G(V,E) and G*(V*E*) are
said to be isomorphic if there
exists a one-to-one correspondence
f: V — V * such that {u,v} is an
edge of G if and only if {f(u),f(v)} is
an edge of G*.

Normally, we do not distinguish
between isomorphic graphs (even
though their diagrams may “look
different”)




Homeomorphic Graphs

- Given any graph G, we can obtain a
new graph by dividing an edge of G
with additional vertices.

® ’ . . ' - - Two graphs G and G* are said to
homeomorphic if they can be
obtained from the same graph or
(o) ° ® isomorphic graphs by this method.

- The graphs (a) and (b) on the left

are not isomorphic, but they are
- * * homeomorphic since they can be
obtained from the graph (c) by
® adding appropriate vertices.




PATHS

» A path in a multigraph G consists of an alternating sequence of vertices and
edges of the form

Vp,€1,V1,€2,V2,...,€0n-1,Vn-1,6n,Vn

» where each edge e; contains the vertices v;_; and v; (which appear on the
sides of e; in the sequence).

» The number n of edges is called the length of the path.

» The path is said to be closed if Vo = Vn . Otherwise, we say the path is from
Vo to Vn or between Vo and Vn, or connects Vo to Vn.

» Asimple path is a path in which all vertices are distinct. A path in which all
edges are distinct will be called a trail.

» Acycleis a closed path of length 3 or more in which all vertices are distinct
except Vo = Vn. A cycle of length k is called a k-cycle.




Paths

- Consider the following sequences:
- a= (P4,P1,P2,P5,P1,P2,P3, P6)

- B = (P4,P1,P5,P2,P6)

- Yy = (P4,P1,P5,P2,P3,P5,P6)

- The sequence a is a path from P4 to
Pé6; but it is not a trail since the edge
{P1,P2} is used twice.

- The sequence B is not a path since
there is no edge {P2,P6}

- The sequence vy is a trail since no
edge is used twice; but it is not a
simple path since the vertex P5 is
used twice




Connectivity/Connected Components

A graph G is connected if there is a path
between any two of its vertices.The
graph we just saw is connected, but the
graph on the right is not connected since

Suppose G is a graph. A connected
subgraph H of G is called a connected
component of G if H is not contained in
any larger connected subgraph of G. It is
intuitively clear that any graph G can be
partitioned into its connected
components. The graph on the right has
three connected components, the
subgraphs induced by the vertex sets
{A,C,D;}, {E,F}, and {B}.

The vertex B is called an isolated vertex
since B does not belong to any edge or, in
other words, deg(B) = 0. B itself forms a
connected component of the graph.




Distance and Diameter

- Consider a connected graph G. The
distance between vertices u and v
in G, written d(u,v), is the length
of the shortest path between u and
V.

-~ The diameter of G, written
diam(G), is the maximum distance
between any two points in G.

- For example, d(A,F) =2 and
diam(G) = 3




Cutpoints and Bridges

- Let G be a connected graph. A
vertex v in G is called a cutpoint if
G-v is disconnected.

- An edge e of G is called a bridge if
G-e is disconnected. (Recall that G
- e is the graph obtained from G by
simply deleting the edge e).

- For example, the edge = {D,F} is a
bridge.

- Its endpoints D and F are
necessarily cutpoints.




TRAVERSABLE AND EULERIAN GRAPHS

- A multigraph is said to be traversable if it
“can be drawn without any breaks in the
curve and without repeating any edges,”
(if there is a path which includes all
vertices and uses each edge exactly once)

- Such a path must be a trail (since no
edge is used twice) and will be called a
traversable trail

- A graph G is called an Eulerian graph if
there exists a closed traversable trail,
called an Eulerian trail.

-~ Theorem 8.3 (Euler):

- A finite connected graph is Eulerian if
and only if each vertex has even degree




Hamiltonian Graphs

- A Hamiltonian circuit in a graph G, is
a closed path that visits every vertex
in G exactly once. Such a closed path
must be a cycle.

-~ If G does admit a Hamiltonian circuit,
then G is called a Hamiltonian graph.

{a)} Hamiltonian and non-Eulerian

-~ Note that an Eulerian circuit traverses
every edge exactly once, but may
repeat vertices!

- Theorem 8.5: Let G be a connected
graph with n vertices. Then G is
Hamiltonian if n > 3 and n/2 < deg(v)
for each vertex v in G.

(/) Eulerian and non-Hamiltonian




LABELED AND WEIGHTED GRAPHS

A graph G is called a labeled graph if its
edges and/or vertices are assigned data
of one kind or another.

In particular, G is called a weighted graph
if each edge e of G is assigned a
nonnegative number w(e) called the
weight or length of v.

The weight (or length) of a path in such a
weighted graph G is defined to be the
sumhof the weights of the edges in the
path.

One important problem in graph theory is
to find a shortest path, that is, a path of
minimum weight (length), between any
two given vertices.

For example, the length of a shortest
path between P and Q is 14; one such
path is (P,A1,A2,A5,A3,A6,Q)




COMPLETE, REGULAR,AND BIPARTITE
GRAPHS

- A graph G is said to be complete if every
vertex in G is connected to every other
vertex in G. The complete graph with n
vertices is denoted by Kn

-~ Agraph G is regular of degree k or k-regular
if every vertex has degree k. In other words,
a graph is regular if every vertex has the
same degree.

3-regular

- A graph G is said to be bipartite if its
vertices V can be partitioned into two
subsets M and N such that each edge of G
connects a vertex of M to a vertex of N.

- By a complete bipartite graph, we mean
that each vertex of M is connected to each
vertex of N; this graph is denoted by Km,n
where m is the number of vertices in M and
n is the number of vertices in N, and, for
standardization, we will assume m < n




Trees

A graph T is called a tree if T is connected
and T has no cycles.

A forest G is a graph with no cycles; hence

the connected components of a forest G are
trees. The tree consisting of a single vertex
with no edges is called the degenerate tree.

Consider a tree T. Clearly, there is only one
simple path between two vertices of T;
otherwise, the two paths would form a
cycle. Also:

(a) Suppose there is no edge {u,v}in T and
we add the edge e = {u,v} to T. Then the
simple path from u to vin T and e will form
a cycle; hence T is no longer a tree.

(b) On the other hand, suppose there is an
edge e = {u,v}in T, and we delete e from T.
Then T is no longer connected (since there
cannot be a path from u to v); hence T is no
longer a tree.

Va

¥y




Trees

-~ Theorem 8.6: Let G be a graph

d 2 . with n > 1 vertices. Then the
“ / following are equivalent:
> D - (i) G is a tree.
b y

- (ii) Gis a cycle-free and has n - 1
edges.

- (iii) G is connected and has n - 1
N edges.




Spanning Trees

>

A subgraph T of a connected graph
G is called a spanning tree of G if T
is a tree and T includes all the
vertices of G. Figure 8-18 shows a
connected graph G and spanning
trees T1, T2, and T3 of G.




Minimal Spanning Trees

- Suppose G is a connected weighted graph. That is, each edge of G is assigned
a nonnegative number called the weight of the edge.

- Then any spanning tree T of G is assighed a total weight obtained by adding
the weights of the edges in T. A minimal spanning tree of G is a spanning tree
whose total weight is as small as possible.

- The following algorithms enable us to find a minimal spanning tree T of a
connected weighted graph G where G has n vertices. (In which case T must
have n - 1 vertices.)




Minimal Spanning Trees

Algorithm 8.2: The input is a connected weighted graph G with n vertices.
Step 1. Arrange the edges of G in the order of decreasing weights.

Step 2. Proceeding sequentially, delete each edge that does not disconnect the graph until n -1
edges remain.

Step 3. Exit.

- Example:

- Find a minimal spanning tree of the weighted graph Q. Note that Q has six
vertices, so a minimal spanning tree will have five edges.




Algorithm 8.2: The input is a connected weighted graph G with n vertices.

Step 1. Arrange the edges of G in the order of decreasing weights.

Step 2. Proceeding sequentially, delete each edge that does not disconnect the graph until n — 1
edges remain.

Step 3. Exit.

-  First we order the edges by decreasing
weights, and then we successively
delete edges without disconnecting Q
until five edges remain.

- This yields the following data:

Edges BC AF AC BE CE BF AE DF BD
Weight 8 7 7 7 6 5 4 4 3
Delete Yes Yes Yes No No Yes

- Thus the minimal spanning tree of

Q which is obtained contains the
edges BE, CE, AE, DF, BD ~ The spanning tree has weight 24




Minimal Spanning Trees

Algorithm 8.3 (Kruskal): The input is a connected weighted graph G with n vertices.
Step 1. Arrange the edges of G in order of increasing weights.

Step 2. Starting only with the vertices of G and proceeding sequentially. add each edge which does
not result in a cycle until » — 1 edges are added.

Step 3. Exit.

- Example:

- Find a minimal spanning tree of the weighted graph Q. Note that Q has six
vertices, so a minimal spanning tree will have five edges.




Algorithm 8.3 (Kruskal): The input is a connected weighted graph G with n vertices.
Step I. Arrange the edges of G in order of increasing weights.

Step 2. Starting only with the vertices of G and proceeding sequentially, add each edge which does
not result in a cycle until » — 1 edges are added.

Step 3. Exit.

-  First we order the edges by increasing
weights, and then we successively add
edges without forming any cycles until
five edges are included. This yields the
following data:

- This yields the following data:

Edges BD AE DF BF CE AC AF BE BC
Weight 3 4 4 5 6 7 7 7 8
Add? Yes Yes Yes No Yes No Yes

- Thus the minimal spanning tree of
Q which is obtained contains the - The spanning tree has weight 24
edges BD, AE, DF, CE, AF




Planar Graphs

- A graph or multigraph which can be
drawn in the plane so that its edges
do not cross is said to be planar.

- Although the complete graph with
four vertices K 4 is usually pictured
with crossing edges as in (a), it can
also be drawn with noncrossing edges
as in (b)

-~ Hence K 4 is planar.

- Tree graphs form an important class
of planar graphs. This section
introduces our reader to these
important graphs.




Maps, Regions

- A particular planar representation of a finite planar multigraph is called a map. We
say that the map is connected if the underlying multigraph is connected. A given
map divides the plane into various regions.

- Observe that four of the regions are bounded, but the fifth region, outside the
diagram, is unbounded. Observe that the border of each region of a map consists of
edges. Sometimes the edges will form a cycle, but sometimes not. For example, the
borders of all the regions are cycles except for r3.

- However, if we do move counterclockwise around r 3 starting, say, at the vertex C,
then we obtain the closed path (C,D,E,F,E,C) where the edge {E,F} occurs twice.

- By the degree of a region r, written deg(r), we mean the length of the cycle or
closed walk which borders r. We note that each edge either borders two regions or is
contained in a region and will occur twice in any walk along the border of the
region.




Maps, Regions

-~ Theorem 8.7: The sum of the degrees
of the regions of a map is equal to
twice the number of edges.

= Euler’s Formula

- Euler gave a formula which connects
the number V of vertices, the number
E of edges, and the number R of
regions of any connected map.
Specifically:

-~ Theorem 8.8 (Euler): V-E+R=2

- The degrees of the regions of Fig.
8-22 are: deg(r1) =3, deg(r2) =3,
deg(r 3 ) =5, deg(r 4 ) =4, deg(r>5 ) =
3. The sum of the degrees is 18,
which, as expected, is twice the
number of edges




Non-planar Graps

# Theorem 8.10: (Kuratowski) .

B,

» Agraph is nonplanar if and only if
it contains a subgraph
homeomorphic to K33 or Ks




REPRESENTING GRAPHS IN COMPUTER
MEMORY

*» Adjacency Matrix

» Suppose G is a graph with m vertices, and suppose the vertices have been
ordered, say, V1,V2,...,Vm .Then the adjacency matrix A = [q;;] of the graph

G is the m x m matrix defined by
1 if v; is adjacent to v;

a. . . J
1 0 otherwise

A B C D E

A B C 4 o 1 0 1 0
b B |1 0 1 0 1

clo 1 0 0 0

I—I D1 0o 0o 0 1
D E E |0 1 0 1 0

(a) (b)




REPRESENTING GRAPHS IN COMPUTER
MEMORY

» Linked Representation of a Graph G

» G may be represented in memory by some type of linked representation, also
called an adjacency structure, which is described below by means of an

example.
. A B C Adjacency list
» Observe that G may be defined by the table: o ; o
B A CD
N ik
» This table may also be presented in the compact form D ? '2_’ ;‘;B

G = [A:B,D; B:A,C,D; C:B; D:A,B; E: @] @ 5




REPRESENTING GRAPHS IN COMPUTER
MEMORY

- The linked representation of a graph G, which maintains G in memory by using its
adjacency lists, will normally contain two files (or sets of records), one called the
Vertex File and the other called the Edge File, as follows.

- (a) Vertex File: The Vertex File will contain the list of vertices of the graph G usually
maintained by an array or by a linked list. Each record of the Vertex File will have

the form
verTex | NExTv | pTR [N

- Here VERTEX will be the name of the vertex, NEXT-V points to the next vertex in the
list of vertices in the Vertex File when the vertices are maintained by a linked list,
and PTR will point to the first element in the adjacency list of the vertex appearing
in the Edge File.

- The shaded area indicates that there may be other information in the record
corresponding to the vertex.




REPRESENTING GRAPHS IN COMPUTER
MEMORY

- Edge File: The Edge File contains the edges of the graph G. Specifically, the Edge
File will contain all the adjacency lists of G where each list is maintained in memory
by a linked list. Each record of the Edge File will correspond to a vertex in an
adjacency list and hence, indirectly, to an edge of G. The record will usually have
the form

[ ence [ an | next |

- Here:
- (1) EDGE will be the name of the edge (if it has one).
- (2) ADJ points to the location of the vertex in the Vertex File.

- (3) NEXT points to the location of the next vertex in the adjacency list.

- We emphasize that each edge is represented twice in the Edge File, but each record
of the file corresponds to a unique edge. The shaded area indicates that there may
be other information in the record corresponding to the edge.




REPRESENTING GRAPHS IN COMPUTER
MEMORY

Vertex file
1 2 3 4 5 6 7T 8
VERTEX | B F|D| A C| E
START | 4 NEXT-V | 3 511 8 01 7
PTR 9 4 |7 | 6 51|12
Edge file
1 2 3 4 5 6 7 & 9 10 11 12 13 14
AD]J 4 | 4 1 B8 1|53 ]5 8| 47
NEXT [ 8| 0|10 OO 23 ]0((1110]0 1




REPRESENTING GRAPHS IN COMPUTER
MEMORY

- List the vertices in the order they

. Vertex file
appear in memory: 1 2 3 4 5 6 7

VERTEX | B F|D| A4

START | 4 NEXT-V | 3 511 8

PTR 9 4 | 7| 6

- Since START = 4, the list begins -
with the vertex D. The NEXT-V tells Edge file

1 2 3 4 5 6 7 & 9 10 11 12 13 14
us to go to 1(B), then 3(F), then AD] e T T T s T s T Ts 215
5(A), then 8(E), and then 7(C); that NEXT (810 T1ol oo 213 o110 011

is, D,B,FAEC




REPRESENTING GRAPHS IN COMPUTER
MEMORY

- Find the adjacency list adj(v) of each

vertex v of G i 2 3 Vm:tx ﬁ,le’
- Here adJ(D) = [5( ) ( ) 8( )] VERTEX | B Fl D
- Specifically, PTR[4(D )] =7 and ADJ[7] START[ 4] NEXTV | 3 s |

= 5(A) tells us that adj(D) begins with PTR 9 a4 | 7

- Then NEXT[7] = 3 and ADJ[3] = 1(B)

. . Edge file

’;%ljlfDL)I? that B is the next vertex in { % % 4 % & T E N Ob 1L T 13 14
-~ Then NEXT[3] = 10and ADJ[10] = 8(E) AN (#1411 Bl8]11F|3

tells us that E in the next vertex in NEXT | 8 |0 [10) 0] O 2]3]0

adj(D).

-~ However, NEXT[10] = 0 tells us that
there are no more neighbors of D.




GRAPH ALGORITHMS

- This section discusses two important graph algorithms which systematically
examine the vertices and edges of a graph G.

- One is called a depth-first search (DFS) and the other is called a breadth-first
search (BFS).

- Any particular graph algorithm may depend on the way G is maintained in
memory. Here we assume G is maintained in memory by its adjacency
structure. Here is our test graph G (we assume the vertices are ordered
alphabetically)




GRAPH ALGORITHMS

- During the execution of our algorithms, each vertex (node) N of G will be in
one of three states, called the status of N, as follows:

- STATUS = 1: (Ready state) The initial state of the vertex N.

- STATUS = 2: (Waiting state) The vertex N is on a (waiting) list, waiting to be
processed.

- STATUS = 3: (Processed state) The vertex N has been processed.

- The waiting list for the depth-first seach (DFS) will be a (modified) STACK
(which we write horizontally with the top of STACK on the left), whereas the
waiting list for the breadth-first search (BFS) will be a QUEUE.




DFS

- The general idea behind a depth-first search beginning at a starting vertex A
is as follows.

- First we process the starting vertex A. Then we process each vertex N along a
path P which begins at A; that is, we process a neighbor of A, then a neighbor
of a neighbor, and so on.

- After coming to a “dead end,” that is to a vertex with no unprocessed
neighbor, we backtrack on the path P until we can continue along another
path P’. And so on.

- The backtracking is accomplished by using a STACK to hold the initial vertices
of future possible paths. We also need a field STATUS which tells us the
current status of any vertex so that no vertex is processed more than once.




DFS

Step 1.
Step 2.

Step 3.
Step 4.
| Step 5.

Step 6.

Algorithm 8.5 (Depth-first Search): This algorithm executes a depth-first search on a graph G

beginning with a starting vertex A.
Initialize all vertices to the ready state (STATUS = 1),

Push the starting vertex 4 onto STACK and change the status of 4 to the waiting state
(STATUS = 2).

Repeat Steps 4 and 5 until STACK 15 empty.
Pop the top vertex N of STACK. Process N, and set STATUS (V) = 3, the processed state.

Examine each neighbor J of N.

(ay If STATUS (J) =1 (ready state), push J onto STACK and reset STATUS (J) =2
(waiting state).

(b) If STATUS (J) = 2 (waiting state), delete the previous J from the STACK and push
the current J onto STACK.

(c) If STATUS (J) = 3 (processed state), ignore the vertex J.

[End of Step 3 loop.]

Exit.




DFS STACK | A DCB KCB LICB MICB JCB CB B
Vertex A D K L M J e B

~ During the DFS algorithm, the first
vertex N in STACK is processed and
the neighbors of N (which have not
been previously processed) are
then pushed onto STACK

- Initially, the beginning vertex A is
pushed onto STACK. The following
shows the sequence of waiting lists
in STACK and the vertices being
processed




BFS

-~ The general idea behind a breadth-first search beginning at a starting vertex
Ais as follows.

- First we process the starting vertex A. Then we process all the neighbors of A.
Then we process all the neighbors of neighbors of A. And so on.

- Naturally we need to keep track of the neighbors of a vertex, and we need to
guarantee that no vertex is processed twice. This is accomplished by using a
QUEUE to hold vertices that are waiting to be processed, and by a field
STATUS which tells us the current status of a vertex.




BFS

Step 1.
Step 2.

Step 3.
Step 4.

Step 5.

Step 6.

Algorithm 8.6 (Breadth-first Search): This algorithm executes a breadth-first search on a graph

G beginning with a starting vertex 4.
Initialize all vertices to the ready state (STATUS = 1).

Put the starting vertex 4 in QUEUE and change the status of 4 to the waiting state
(STATUS = 2).

Repeat Steps 4 and 5 until QUEUE is empty.

Remove the front vertex N of QUEUE. Process N, and set STATUS (N) =3, the
processed state.

Examine each neighbor J of N.

(@) If STATUS (J)=1 (ready state), add J to the rear of QUEUE and reset
STATUS (J) = 2 (waiting state).

(b) If STATUS (J) = 2 (waiting state) or STATUS (J) = 3 (processed state), ignore the
vertex J.

[End of Step 3 loop.]

Exit.




BFS

QUEUE
Vertex

A DCB DC LKD LK MJL MIJ
A B = D K L J

M O
M




Traveling Salesman Problem

- Let G be a complete weighted graph. (We view the vertices of G as cities, and
the weighted edges of G as

- the distances between the cities.) The “traveling-salesman” problem refers to
finding a Hamiltonian circuit for G of minimum weight.

- First we note the following theorem:

-~ Theorem 8.13: The complete graph K n with n > 3 vertices has H=(n - 1)!/2
Hamiltonian circuits (where we do not distinguish between a circuit and its
reverse).




Traveling Salesman Problem

- Consider the complete weighted
graph G in Fig. 8-35(a). It has four
vertices, A, B, C, D.

- By the previous theorem it has H =
3!/2 = 3 Hamiltonian circuits.
Assuming the circuits begin at the
vertex A, the following are the
three circuits and their weights:

~ |ABCDA| =3+5+6+7=21
- |ACDBA| =2+6+9+3=20
-~ |ACBDA| =2+5+9+7=23




Traveling Salesman Problem

- We solved the “traveling-salesman problem” for the weighted complete graph by
listing and finding the weights of its three possible Hamiltonian circuits. However,
for a graph with many vertices, this may be impractical or even impossible.

- For example, a complete graph with 15 vertices has over 40 million Hamiltonian
circuits. Accordingly, for circuits with many vertices, a strategy of some kind is
needed to solve or give an approximate solution to the traveling-salesman problem.

- We discuss one of the simplest algorithms here.
- Nearest-NeighborAlgorithm

- The nearest-neighbor algorithm, starting at a given vertex, chooses the edge with
the least weight to the next possible vertex, that is, to the “closest” vertex. This
strategy is continued at each successive vertex until a Hamiltonian circuit is
completed.




Traveling Salesman Problem

- Starting at P, the first row of the table
shows us that the closest vertex to P
is S with distance 15. The fourth row
shows that the closest vertex to S is Q p Q R g
with distance 12. The closest vertex - '

to Q is R with distance 11. From R, P 18 27 15
there is no choice but to go to T with | | |
distance 10. Finally, from T, there is Q 18 11 12
no choice but to go back to P with R 22 11 16
distance 20. Accordingly, the | , | ,

nearest-neighbor algorithm beginning 5 15 12 16

at P yields the following weighted T 20 22 10 13

Hamiltonian circuit:
- |PSQRTP| =15+12+11+ 10+ 20 =
68




Traveling Salesman Problem

-

>

Starting at Q, the closest vertex is
R with distance 11; from R the
closest is T with distance 10; and
from T the closest is S with
distance 13. From S we must go to
P with distance 15; and finally
from P we must go back to Q with
distance 18.

Accordingly, the nearest-neighbor
algorithm beginning at Q yields the
following weighted Hamiltonian
circuit:

|QRTSPQ| =11 +10+13 + 15 + 18
=67

P Q R S
P 18 22 15
Q 18 11 12
R 22 11 16
5 15 12 16
T 20 22 10 13




Questions?




