

Компьютерная дискретная математика

Логика высказываний

Лекции 08-09 Н.В. Белоус

Факультет компьютерных наук Кафедра ПО ЭВМ, ХНУРЭ

Основные понятия

Высказывание — это повествовательное предложение, о котором можно сказать истинно оно или ложно, но ни то и другое одновременно.

Истина или ложь, приписанная некоторому высказыванию, называется *истинностным значением* этого высказывания.

Обозначается:

«Истина» – И, Т (True) или 1,

«Ложь» – Π , F (False) или 0.

Основные понятия

Пример.

«Волга впадает в Черное море»-

ложное высказывание;

«Волга впадает в Каспийское море»-

истинное высказывание;

«Какой сегодня день?»-

не высказывание;

«Расстояние от Земли до Солнца равно 150 млн. км»не высказывание.

WIG

Основные понятия

Атомами (элементарными высказываниями) называются высказывания, которые соответствуют простым повествовательным предложениям, т.е. не имеют составных частей.

Атомы обозначаются заглавными буквами латинского алфавита A, B, C... или заглавными буквами с индексами.

Из элементарных высказываний можно строить сложные высказывания, называемые формулами или молекулами.

Логические связки в логике высказываний

Название	Обозна- чение	Аналоги естественного языка					
Эквивалент-	\sim , \equiv , \leftrightarrow	эквивалентно, равносильно, «тогда и только тогда»					
импликация	\rightarrow , \supset	влечет, «если, то», «только если»					
конъюнкция	\wedge ,&	И					
дизъюнкция		или, «или…или оба»					
отрицание	7,	не, «неверно, что»					

Логические связки. Отрицание

 $Ompuцание \neg A$ истинно тогда и только тогда, когда A ложно.

Пример.

Записать в виде формулы логики высказываний и определить истинностное значение выражений «Неверно, что $2 \times 2 = 7$ » и «Неверно, что $3 \times 3 = 9$ ».

$$A: \langle\langle 2 \times 2 = 7 \rangle\rangle$$
 $B: \langle\langle 3 \times 3 = 9 \rangle\rangle$ $\neg A = \neg JI = U$ $\neg B = \neg U = JI$

Логические связки. Дизъюнкция

Если A и B — высказывания, то высказывание A V B, называемое ∂u зъюнкцией A и B, ложно тогда и только тогда, когда ложны оба высказывания A и B.

Употребляется в смысле «неисключающее или».

Пример.

Записать в виде формулы логики высказываний и определить истинностное значение следующих высказываний:

$$\ll 5 + 2 = 10$$
 или $5 \times 2 = 10$ », $\ll 6 - 3 = 2$ или $3 \times 2 = 5$ »

$$A: (5+2=10)$$

$$B: \langle \langle 5 \times 2 = 10 \rangle \rangle$$

$$A \lor B = JI \lor U = U$$

$$C: (6-3=2)$$

$$D: \langle\langle 3 \times 2 = 5 \rangle\rangle$$

$$C \lor D = \mathcal{I} \lor \mathcal{I} = \mathcal{I}$$

Логические связки. Конъюнкция

Если A и B — высказывания, то высказывание $A \wedge B$, называемое *конъюнкцией* A и B, истинно тогда и только тогда, когда истинны оба высказывания A и B.

Соответствует связке «и», соединяющей два предложения.

Пример.

Записать в виде формулы логики высказываний и определить истинностное значение следующих высказываний:

«6 делится на 3, и 10 больше 5»,

«6 делится на 3, и 7 больше 10».

A: «6 делится на 3»,

В: «10 больше 5»,

C: «7 больше 10».

$$A \wedge B = U \wedge U = U$$

$$A \wedge C = U \wedge J =$$

Логические связки. Импликация

Если A и B — высказывания, то высказывание $A \rightarrow B$, называемое *импликацией* (условным предложением), ложно тогда и только тогда, когда A истинно, а B ложно.

А называется посылкой (условием, антецедентом), В – следствием (заключением, консеквентом).

Логические связки

Пример.

Записать в виде формулы логики высказываний и построить таблицу истинности высказывания «Если идет дождь, то над моей головой открыт зонтик».

Решение.

A — «идет дождь»

В – «над моей головой открыт зонтик»

A	В	$A \rightarrow B$	Результат
Л	Л	И	останусь сухим
И	Л	Л	промокну
Л	И	И	останусь сухим
И	И	И	останусь сухим

Логические связки. Эквивалентность

Если A и B — высказывания, то высказывание $A \sim B$ истинно тогда и только тогда, когда A и B либо оба истинны, либо оба ложны.

Пример.

Записать в виде формулы логики высказываний и определить истинностное значение высказываний:

«Для того чтобы $2 \times 2 = 4$ необходимо и достаточно, чтобы 2 + 2 = 4»,

 $\langle 2 \times 2 = 5$ равносильно тому, что $3 \times 3 = 8 \rangle$.

$$A:2\times 2=4$$

$$B:3\times3=8$$

$$A \sim C = H \sim H = H$$

$$C: 2+2=4$$

$$D: 2 \times 2 = 5$$

$$D \sim B = JI \sim JI = II$$

Логика высказываний

Погика высказываний — это алгебраическая структура ($\{\Pi, H\}, \land, \lor, \neg, \rightarrow, \sim, \varPi, H$), образованная двоичным множеством $\{\Pi: «Ложь», H: «Истина»\}$, вместе с *погическими связками*:

- ∕ конъюнкции,
- V − дизъюнкции,
- ___ отрицания,
- \rightarrow импликации,
- ~ − ЭКВИВАЛЕНТНОСТИ

и константами:

J - ложь

M — истина.

Формулы логики высказываний

В логике высказываний правильно построенная формула определяется рекурсивно следующим образом:

- 1. Атом есть формула.
- 2. Если A и B формулы, то $(A \land B)$, $(A \lor B)$, $(A \rightarrow B)$, $(A \sim B)$, $\neg A$ и $\neg B$ также формулы.
- 3. Никаких формул, кроме порожденных указанными выше правилами, не существует.

Формулы логики высказываний

Формулы логики высказываний, соответствующие сложным высказываниям, принимают значение И или Л в зависимости от значений элементарных высказываний, из которых они построены, и логических связок.

Приписывание истинностных значений ато-мам называется интерпретацией высказывания.

Для высказывания, содержащего n атомов, можно составить 2^n интерпретаций, так же, как и для n-местной булевой функции.

Таблица истинности логических связок

X	Y	$\neg X$	XAY	XVY	$X \rightarrow Y$	<i>X~Y</i>
Л	Л	И	Л	Л	И	И
Л	И	И	Лвом	И	И	Л
И	Л	Л	Л	И	Л	Л
И	И	Л	И	И	И	И

Область действия логических связок

Область действия логической связки определяется частью формулы, ограниченной скобками, между которыми находится данная связка.

Приоритет операций:

$$\neg$$
, \wedge , \vee , \rightarrow , \sim

Область действия логических связок

Пример.

Записать в виде формулы логики высказываний следующее предложение:

«Так как я лег поздно спать, я проспал и из-за этого не пошел на пару».

Решение.

«(Пакккак (плеегноозвооосилины)), (приросилини) н. из н. за этого не (поменлисторуу).».

P — «Я лег поздно спать»,

Q – «Я проспал»,

S – «Я пошел на пару».

$$(P \rightarrow Q) \rightarrow \neg S$$

Общезначимые и противоречивые формулы

Формула называется *тождественно истинной* (*тавтологией* или *общезначимой*), если она принимает значение «Истина» на всех наборах значений входящих в нее переменных.

Формула называется *тождественно ложной* (*противоречивой* или *невыполнимой*), если она принимает значение «Ложь» на всех наборах значений входящих в нее переменных.

Формула называется *необщезначимой или непротиворечивой*, если она при одних наборах значений входящих в нее переменных принимает значение «Истина», а при других – «Ложь».

Логические следствия, теоремы про логические следствия

Формула B является логическим следствием формулы A, если на всех тех наборах атомов, которые входят в A или B при которых A имеет истинное значение, формула B также истина.

Теоремы — это формулы, которые являются логическим следствием множества аксиом данного исчисления.

Теоремы исчисления высказываний являются тождественно истинными формулами.

THIC / NO MAY !

Логические следствия

Пример.

Определить, является ли высказывание $(A \land B)$ $\lor \neg C$ логическим следствием высказывания $A \land \neg C$.

Решение.

$$(A \land \neg C) \rightarrow ((A \land B) \lor \neg C) =$$

$$= \neg (A \land \neg C) \lor ((A \land B) \lor \neg C) =$$

$$= \neg A \lor C \lor (A \land B) \lor \neg C =$$

$$= \neg A \lor (A \land B) \lor \neg C \lor C =$$

$$= \neg A \lor (A \land B) \lor H =$$

$$= H$$

Дедуктивный вывод

Дедуктивный вывод. Пример

Доказать правильность рассуждения по дедукции: «Резолюция принимается, если за нее голосует большинство депутатов. За резолюцию не проголосовало большинство депутатов, поэтому резолюция не принимается».

P — «за резолюцию проголосовало большинство депутатов», Q — «резолюция принимается».

$$((P \sim Q) \land (\neg P)) \rightarrow (\neg Q) = ((\neg P \lor Q) \land (P \lor \neg Q) \land (\neg P)) \rightarrow (\neg Q)$$

$$((\neg P \lor Q) \land (\neg P) \land (P \lor \neg Q)) \rightarrow (\neg Q) = ($$
коммутативный закон) $((\neg P) \land (P \lor \neg Q)) \rightarrow (\neg Q) = ($ закон поглощения) $((\neg P \land P) \lor (\neg P \land \neg Q)) \rightarrow (\neg Q) = ($ дистрибутивный закон) $(\neg P \land \neg Q) \rightarrow (\neg Q) = ($ закон противоречия) $\neg (\neg P \land \neg Q) \lor (\neg Q) = P \lor Q \lor \neg Q = M$ (закон исключенного третьего)

Логические следствия, теоремы про логические следствия

В математике и «чистой» логике доказывают теоремы, т.е. выводят следствия из определенных допущений.

Допущения называются *аксиомами* или *гипотезами*, при этом предполагается, что они тождественно истинны во всей рассматриваемой теории.

Доказательство представляет собой логический вывод списка высказываний.

Правила для дедуктивного вывода строятся на основе общезначимых формул логики высказываний вида $A \rightarrow B$. Эти правила часто записывают как правила формального вывода в следующем виде:

$$\frac{A_1,...,A_n}{B}$$

 $A_1, ..., A_n$ — посылки вывода;

B — следствие.

Тавтология, соответствующая такому правилу — $A_1 \land A_2 \land ... \land A_n \rightarrow B = 1$.

1. Правило введения дизъюнкции.

Правило дедуктивного вывода:

P

PVQ

$$P \rightarrow (P \lor Q)$$

2.Правило введения конъюнкции.

Правило дедуктивного вывода:

$$P \wedge Q$$

$$((P) \land (Q)) \rightarrow (P \land Q)$$

3. Правило удаления дизъюнкции (Дизъюнктивный силлогизм).

Правило дедуктивного вывода:

$$P \lor Q$$
 $\neg P$

Q

$$(P \lor Q) \land \neg P \rightarrow Q$$

4. Правило удаления конъюнкции.

Правило дедуктивного вывода:

$$P \wedge Q$$

P

$$(P \land Q) \rightarrow P$$

5. Правило контрапозиции импликации.

Правило дедуктивного вывода:

$$P \rightarrow Q$$

$$\neg Q \rightarrow \neg P$$

$$(P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)$$

6. Правило отделения (Modus Ponens).

Правило дедуктивного вывода:

$$P \rightarrow Q$$
 P

Q

$$(P \land (P \rightarrow Q)) \rightarrow Q$$

7. Отрицательная форма правила отделения (Modus Tollens).

Правило дедуктивного вывода:

$$\neg Q$$
 $P \rightarrow Q$

¬P

$$(\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$$

8. Гипотетический силлогизм.

Правило дедуктивного вывода:

$$P \rightarrow Q$$
 $Q \rightarrow R$

$$P \rightarrow R$$

$$((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

Правило отделения

Правило от деления имеет следующий логический смысл: если посылка верна, то верно и следствие из нее.

Правило отделения

Пример.

Получить логический вывод из высказываний F_1 и F_2 , используя правило отделения.

$$F_1 = (A \land B) \rightarrow \neg C,$$

$$F_2 = (A \land B).$$

Решение.

Пусть
$$(A \land B) = D$$
,
$$\neg C = G.$$

$$(D \land (D \rightarrow G)) \rightarrow G$$

$$(A \land B) \rightarrow \neg C(A \land B)$$

$$\neg C$$