the baseband bane

Neerad Somanc hi

Anjana Guruprasad



A Typical Smartphone

- How many processors?

e The application processor (AP) — The one advertisements talk about
e Qualcomm Snapdragon, Samsung Exynos, Apple A series

e The communications processor (CP) — The Internet!

e Low power ARM CPUs — Protocol Stack Processor

e Qualcomm X12, Samsung Shannon S333

- How many Operating Systems?

e AP — Android, 10S

e CP — RTOS to handle time critical operations
e Proprietary, closed source
e Nulceus OS, ThreadX, Shannon OS



Application Processor
(slave)

Digital Baseband Processor
(master)

Shared memory architecture

Application
Processor

Serial communication
or shared memory

Digital Baseband
Processor

Baseband as modem




Radio access technology

Global Mobile Subscribers and Market Share by Technology
September 2015

HSPA s )
29% 7.3 Billion mobile

2 Billion Subscriptions 4 subscriptions
worldwide

TD-SCDMA - " GSM
3% 51%

195 Million Subscriptions =
e 3.7 Billion

Subscriptions

5%
351 Million Subscriptions
LTE
12%
908 Million Subscriptions

The number of
mobile-connected
devices surpasses

the number of

people on earth.

Other = 6.4 Million Subscriptions %’\})
arsncerical ¥

www.dgamericas.org
Source: September 2015




&

G100dl SdySteim TOr IVIODIIE

\IOI1Vi}

p.l(‘)t'f

% SMS via GSM ,
b Phone/Modem ¥ Laptop with
3 SMS Gateway

' 2
N
L! SMS Center Recipient
GFI EventsManager Iat;ﬁletPC Wih J)
5 SMS Gateway

Machine with connected
GSM Phone/Modem

Smart or Satellite phone




GSM PROTOCOL STACK

—_

— Layer 3

_—



Baseband Protocol stack

- Code base created in the 1990s... With a 1990s attitude towards security

- Network elements like Base Transceiver Station(BTS) are considered trusted

e Very expensive back then
e Now - Rogue BTS can be fashioned for as little as 1500 USD

- Layer 3 Protocol — Specified in GSM 04.08
e Allows for variable length messages
e Maximum Length: 255 Bytes (Length Field: One Byte)

- Some messages specified to be encoded as variable length messages
- ...even though the message description implies that it is of fixed length

- Potential Exploit!



Finding Bugs

- Fuzzing — Providing invalid, unexpected and random data as protocol messages
e Baseband crashes, but no way to glean any information from crash logs

- Static Analysis — Analyze code without executing it

e No source code publicly available

e Exception — Vitelcom TSM30 source code was leaked in 2004

e Helped understand the general architecture of the GSM protocol stack code

- Conclusion — Reverse engineer binaries

- OTA firmware updates contain baseband firmware as well



Reverse engineering binaries

- Tools for identifying interesting code paths — IDA Pro Disassembler and Google
BinDiff

- Disassembler translates machine language into assembly language — inverse of
assembler

- BinDiff compares and identifies identical and similar functions in disassembled
code

- BinDiff generates function “fingerprints”

- Run both tools on target binary and a known code base — VSM30 to the rescue!
- Helped identify functions like memcpy() and memmov()

- Then 1dentify functions that used variable-length memory copies

- Check if they employed sufficient length checking for the copied or moved data



The bugs!

- Insufficient length checks, aka, unchecked memory copies
e Found in binary once memecpy() et al. are identified

- Object/structure lifecycle 1ssues

e Generous use of state machines in GSM

e Use-after-free bugs, uninitialized variables, unhandled states
e Harder to exploit these bugs

- Code path pains
e Code paths used for 3G (UMTS) can be triggered using GSM messages



Example (Infineon Code base)

- TMSI — Temporary Mobile Subscriber Identity
e Always a 32 bit value
e For some reason, encoded with a length field

- Engineer A allocates only 32 bits for the TSMI value

- Engineer B trusts the length field and copies the value sent by rogue BTS into
location above

- Results in a heap overflow
- Tricky to exploit in a stable way — leads to a modem crash

- Issue 1dentified in 1Phone 4 — Fixed in the subsequent point update to the OS



Example (Qualcomm code base)

- For authentication in GSM, BTS transmits a 16 byte challenge value called
RAND

- 3G (UMTYS) uses a variable length message called AUTN, but is specified to also
be only 16 bytes long

- Qualcomm stack accepts the AUTN challenge even when operating in GSM mode
- Apparently a workaround used by Qualcomm for compatibility reasons

- Rogue BTS sends AUTN message of length > 16 bytes

- Stack overflow as only 16 bytes are provisioned for RAND challenges

- Result — Remote code execution (before successful authentication)

- Qualcomm fixed 1t after disclosure



‘AT + sO = n’ feature exploited

- Hayes AT command set — a specific command language developed for modems in 1981

e Short text strings combined to produce commands for operations like dialing,
hanging up and changing connection parameters

- AT + S0 1s a Hayes command to turn on auto-answer

- Code exists in Infineon and Qualcomm stacks to enable this feature

- For instance, *5005* AANS# enables auto answer on the 1Phone 4

- First, locate the AT command handler function for setting SO register

- Requires examining memory and register contents at runtime

- Enter, JTAG

e Joint Test Action Group — developed standards for on-chip instrumentation
e Processors use JTAG-specified port to provide debugging information

e Software Patch allows JTAG access in HTC dream (Qualcomm baseband)






Target — HTC Dream (Qualcomm)

- Rogue BTS - Ettus Research USRPv1, provides RF processing capability
e Supports two daughter RF boards, for transmit and receive
e OpenBTS, running on a laptop, modified with patches to perform the exploit

- Phone tries to authenticate with the rogue BTS

- Use the AUTN exploit previously discussed, which causes a stack buffer overflow
- Overwrite the program counter and register rO of the stack frame

- PC with the entry point of sO register handler, rO with value 1

- Overwrite the subsequent stack frame’s PC as well to ensure smooth execution
(no crash)

- With the rogue AUTN message, less than 100 bytes long, this exploit is possible

- Auto answer 1s enabled without the user being aware



Impact

- Place Rogue BTS in crowded/sensitive areas

- Audio routing on most chipsets is done on baseband CPU

- Which means it has access to the built-in mic

- Baseband processors have large quantities of RAM available

- Record audio, store in ram, piggy back onto the next data connection

- Shared memory architecture — AP can also be compromised
e Higher layer security features are bypassed

- Brick phones permanently



Solutions?

- Open source baseband stack
e Quicker at 1identifying bugs

e But still hard to patch them as phones need to be carrier certified — long
process

- Isolation
e Cut off baseband access to the mic when not on a call

- Stringent quality control by CP manufacturers
e Use tools like coverity to check for possible buffer overflows

- Problem 1s worse with 3G

e Radio Resource Control protocol specifications almost 1800 pages long
e Messy, complicated

e LTE is cleaner



References

- Baseband Attacks: Remote Exploitation of Memory Corruptions in Cellular Protocol
Stacks - Ralf-Philipp Weinmann, University of Luxembourg



