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A Typical Smartphone

- How many processors?

e The application processor (AP) — The one advertisements talk about
e Qualcomm Snapdragon, Samsung Exynos, Apple A series

e The communications processor (CP) — The Internet!

e Low power ARM CPUs — Protocol Stack Processor

e Qualcomm X12, Samsung Shannon S333

- How many Operating Systems?

e AP — Android, 10S

e CP — RTOS to handle time critical operations
e Proprietary, closed source
e Nulceus OS, ThreadX, Shannon OS
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Radio access technology
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Baseband Protocol stack

- Code base created in the 1990s... With a 1990s attitude towards security

- Network elements like Base Transceiver Station(BTS) are considered trusted

e Very expensive back then
e Now - Rogue BTS can be fashioned for as little as 1500 USD

- Layer 3 Protocol — Specified in GSM 04.08
e Allows for variable length messages
e Maximum Length: 255 Bytes (Length Field: One Byte)

- Some messages specified to be encoded as variable length messages
- ...even though the message description implies that it is of fixed length

- Potential Exploit!



Finding Bugs

- Fuzzing — Providing invalid, unexpected and random data as protocol messages
e Baseband crashes, but no way to glean any information from crash logs

- Static Analysis — Analyze code without executing it

e No source code publicly available

e Exception — Vitelcom TSM30 source code was leaked in 2004

e Helped understand the general architecture of the GSM protocol stack code

- Conclusion — Reverse engineer binaries

- OTA firmware updates contain baseband firmware as well



Reverse engineering binaries

- Tools for identifying interesting code paths — IDA Pro Disassembler and Google
BinDiff

- Disassembler translates machine language into assembly language — inverse of
assembler

- BinDiff compares and identifies identical and similar functions in disassembled
code

- BinDiff generates function “fingerprints”

- Run both tools on target binary and a known code base — VSM30 to the rescue!
- Helped identify functions like memcpy() and memmov()

- Then 1dentify functions that used variable-length memory copies

- Check if they employed sufficient length checking for the copied or moved data



The bugs!

- Insufficient length checks, aka, unchecked memory copies
e Found in binary once memecpy() et al. are identified

- Object/structure lifecycle 1ssues

e Generous use of state machines in GSM

e Use-after-free bugs, uninitialized variables, unhandled states
e Harder to exploit these bugs

- Code path pains
e Code paths used for 3G (UMTS) can be triggered using GSM messages



Example (Infineon Code base)

- TMSI — Temporary Mobile Subscriber Identity
e Always a 32 bit value
e For some reason, encoded with a length field

- Engineer A allocates only 32 bits for the TSMI value

- Engineer B trusts the length field and copies the value sent by rogue BTS into
location above

- Results in a heap overflow
- Tricky to exploit in a stable way — leads to a modem crash

- Issue 1dentified in 1Phone 4 — Fixed in the subsequent point update to the OS



Example (Qualcomm code base)

- For authentication in GSM, BTS transmits a 16 byte challenge value called
RAND

- 3G (UMTYS) uses a variable length message called AUTN, but is specified to also
be only 16 bytes long

- Qualcomm stack accepts the AUTN challenge even when operating in GSM mode
- Apparently a workaround used by Qualcomm for compatibility reasons

- Rogue BTS sends AUTN message of length > 16 bytes

- Stack overflow as only 16 bytes are provisioned for RAND challenges

- Result — Remote code execution (before successful authentication)

- Qualcomm fixed 1t after disclosure



‘AT + sO = n’ feature exploited

- Hayes AT command set — a specific command language developed for modems in 1981

e Short text strings combined to produce commands for operations like dialing,
hanging up and changing connection parameters

- AT + S0 1s a Hayes command to turn on auto-answer

- Code exists in Infineon and Qualcomm stacks to enable this feature

- For instance, *5005* AANS# enables auto answer on the 1Phone 4

- First, locate the AT command handler function for setting SO register

- Requires examining memory and register contents at runtime

- Enter, JTAG

e Joint Test Action Group — developed standards for on-chip instrumentation
e Processors use JTAG-specified port to provide debugging information

e Software Patch allows JTAG access in HTC dream (Qualcomm baseband)






Target — HTC Dream (Qualcomm)

- Rogue BTS - Ettus Research USRPv1, provides RF processing capability
e Supports two daughter RF boards, for transmit and receive
e OpenBTS, running on a laptop, modified with patches to perform the exploit

- Phone tries to authenticate with the rogue BTS

- Use the AUTN exploit previously discussed, which causes a stack buffer overflow
- Overwrite the program counter and register rO of the stack frame

- PC with the entry point of sO register handler, rO with value 1

- Overwrite the subsequent stack frame’s PC as well to ensure smooth execution
(no crash)

- With the rogue AUTN message, less than 100 bytes long, this exploit is possible

- Auto answer 1s enabled without the user being aware



Impact

- Place Rogue BTS in crowded/sensitive areas

- Audio routing on most chipsets is done on baseband CPU

- Which means it has access to the built-in mic

- Baseband processors have large quantities of RAM available

- Record audio, store in ram, piggy back onto the next data connection

- Shared memory architecture — AP can also be compromised
e Higher layer security features are bypassed

- Brick phones permanently



Solutions?

- Open source baseband stack
e Quicker at 1identifying bugs

e But still hard to patch them as phones need to be carrier certified — long
process

- Isolation
e Cut off baseband access to the mic when not on a call

- Stringent quality control by CP manufacturers
e Use tools like coverity to check for possible buffer overflows

- Problem 1s worse with 3G

e Radio Resource Control protocol specifications almost 1800 pages long
e Messy, complicated

e LTE is cleaner
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