Method of moments
for thin wires



Figure 3.1: Thin wire dimensions.
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Figure 3.2: Thin wire segmentation.



The Method of Moments

Galerkin Method

* Converts a linear
equation to a matrix
equation

\

Integral Equation

*Usually uses PEC approximation

sUsually based on current
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The Method of Moments
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which is called Hallén’s integral equation
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E!'(z) = = / f::(,z')[ >+ kf"'] ‘ dz’ (4.12)
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which i1s called Pocklington’s integral equation



4.4 SOLVING POCKLINGTON’S EQUATION

Pocklington’s equation,
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can be solved by a straightforward application of the moment method, since the
differential operator is inside the integral and acts on the Green’s function only.
Expanding the current into a sum of /N weighted basis functions and applying N
testing functions we obtain a linear system with matrix elements

82 e —kr
com = | Fn(2) f.n(z’)[ -+ ] dz' dz (4.58)
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and excitation vector elements b,,, given by
b, = —jwe fm(2) EX(2) dz (4.59)
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L(f)=g (3.24)

where L is a linear operator, g is a known forcing function, and f is unknown. In
electromagnetic problems, L is typically an integro-differential operator, f is the
unknown function (charge, current) and g is a known excitation source (incident
field). Let us now expand f into a sum of N weighted basis functions,

N
f=) anf (3.25)
1

nN=

where a,, are unknown weighting coefficients. Because L is linear, substitution of
the above into (3.24) yields
N

> anL(fn) g (3.26)

=1



< fons fn > = fin (1) - fo(r') dr'dr
f s} - f T

N

Z ap < f'm.: L(f”) > =< f‘m?g >

=1

which results in the N x /N matrix equation Za = b with matrix elements
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and right-hand side vector elements
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3.3.1 Pulse Functions
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Figure 3.8: Pulse functions.
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The impedance matrix elements can be written as
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where R = \/(zm — 2')? + a2, and 3/0~ has been replaced by 9/9z'. Evaluating
the derivative in the second term yields
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allowing us to write
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The matrix elements of (4.36) become
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where matching is done at the center of each segment z,,,, and R = \/ (z;n — 2')2 + d?.
We will compute the non-self terms via an M -point numerical quadrature yielding

1\1 _JAan

. — Z Wy o (4.44)
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where R, = \/ (z2m — 24)? + a®. For the self terms (m = n), we will use a small-
argument approximation to the Green’s function to write
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which evaluates to [9] (Equation 200.01)
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Pulse Basis Functions (3 of 3)

We can now interpret [a] as a column vector containing the currents in each
segment of the antenna.

[a]=[1]

[z lla,]=[20]
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Transformation to True Impedance MatrixCEM

The matrix equation is

[z |[a:] =]

The a, coefficients are the currents in each segment. The g, coefficients are scaled
electric fields. Based on this, it is more intuitive to write the matrix equation as

[=,.1[7.]= [—jmeE_f_“‘ (z, )]

We would like the units on the right-hand side to be voltage so that the [Z] matrix is
true impedance. Voltage is related to the electric field through

11IC I/Tm
B 15,)= =

The final matrix equation in terms of element voltage and current is
JAz

[z ][] = (7] j""j—f’?[- l]=[7]
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Implementation

Build Impedance Matrix | See next slide

Initialize MATLAB | ‘ |
) = 2 | Transform to True Impedance
Define Simulation Parameters | Rl
* Wavelength, 4, | k
* Antenna length, L I
* Wire radius, a Compute Admittance Matrix :
Optional
* Atmosphere, y,.and &, v=7"!
| Number of segments, N |
| | Compute Source Voltage
Compute Constants [VM]T 00 1 - 0 0
ky = 2”/'4'0 |
k= ko i, Compute Current
sy (1= [V
zaz[O:N—l]-Az |

Compute Input Impedance

Z,=v,/i, fed at segment n

| I
Compute Gain/Pattern
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Building the Impedance Matrix

Calculation Step #1

[

Z form=n

l .
?' ""T

Compute Diagonal Term

— kR
eJ

_4xR

S m[J1+(2a/Az)2+1]_jkAz = l

| (ol 1]

dz! form=n
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Calculation Step #2

i l’ ri=J(zm—zn+Az/2)2+az
- Loop Over all m and 7 l _________________ o
. J’ | z‘1:(Zm-Z,.+AZ/2)%@—M
h
r = J(z_ -z, —Az/z)z g
1+ jkry, _.
i, =(zm—zn—m/z)%e i

s
z. =k ":'nm+t2_'tl
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