
ЭЛЕКТРОСТАТИКА

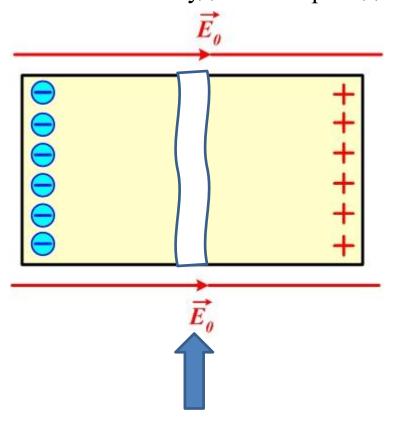
ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ. ЭЛЕКТРОЕМКОСТЬ. ЭНЕРГИЯ

План лекции

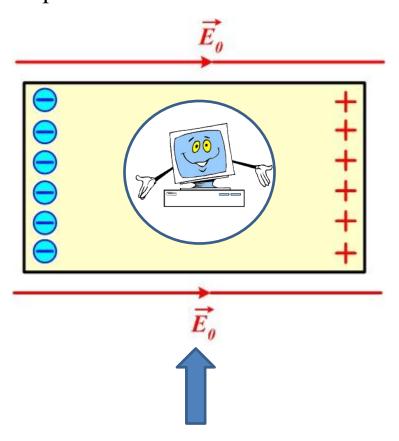
1. Проводник во внешнем электростатическом поле	
2. Поле заряженного проводника	
3. Электрическая емкость	
4. Энергия электростатического поля	

1. Проводник во внешнем электростатическом поле

Индуцированные заряды


Типичными проводники - металлы (количество свободных носителей заряда — электронов проводимости — составляет примерно 10^{22} см⁻³)

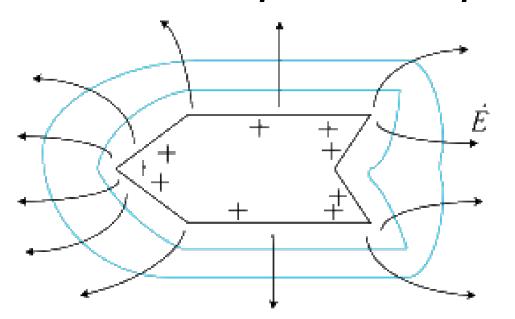
В состоянии равновесия:


$$\begin{split} \overset{\bowtie}{F} &= q\overset{\bowtie}{E} = q\left(\overset{\bowtie}{E_0} + \overset{\bowtie}{E'}\right) = 0. \\ \left|\overset{\bowtie}{E_0}\right| &= \left|\overset{\bowtie}{E'}\right| \qquad \overset{\bowtie}{E} = 0. \end{split}$$

Перераспределение зарядов в проводнике под действием внешнего электростатического поля называется явлением электростатической индукции.

Индуцированные заряды располагаются на поверхности проводника. Они исчезают после удаления проводника из электростатического поля.

Так можно получить два заряженных тела, с одинаковыми по величине, но противоположными по знаку зарядами.


Принцип электростатической защиты (экранирование)

Во всех точках внутри проводника напряженность равна нулю.

Согласно теореме Гаусса
$$q = \varepsilon_0 \oint E dS = 0$$

$$Q = \int_V \rho dV, \qquad \rho = 0.$$
 Вывод: внутри проводника объемная плотность свободного заряда ρ равна нулю, а сам заряд располагается на его поверхности.

Поверхность проводника является эквипотенциальной поверхностью и весь объем проводника представляет собой эквипотенциальную область

2. Поле заряженного проводника

В состоянии равновесия:

$$\stackrel{\bowtie}{E} = 0.$$
 $\varphi = const.$

$$\stackrel{\bowtie}{E} = 0.$$
 $\varphi = const.$ $\rho = 0.$ $E_n = \frac{\sigma}{\varepsilon_0}$

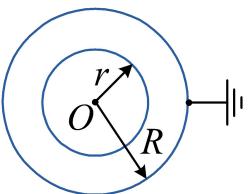
Вблизи поверхности проводника за его пределами напряженность направлена перпендикулярно поверхности. Вблизи выступов на поверхности проводника градиент потенциала, величина напряженности и поверхностная плотность заряда возрастают, в вблизи впадин уменьшаются.

3. Электрическая емкость

$$\varphi = C^{-1}q$$

C - электрическая емкость проводника $[C] = \Phi - \phi apa \partial a$

С уединенного проводника зависит от его формы, размеров и диэлектрических свойств среды, в которой находится проводник, а также электрических свойств, расположения, форм и размеров окружающих тел.


Практический интерес представляет система проводников, электростатическое поле которых полностью сосредоточено в объеме, занимаемом этой системой → конденсатор!

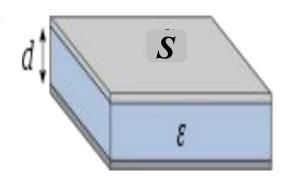
$$q=C(\phi_1-\phi_2)=CU$$
 - заряд на одной из обкладок конденсатора

U – разность потенциалов двух обкладок (для конденсатора ~ напряжению)

1. Два металлических шара радиусом r=2см и R=6см соединены проводником, емкостью которого можно пренебречь. Шарам сообщили заряд Q=1нКл. Найти поверхностную плотность заряда, установившуюся на шарах.

2. Две проводящие вложенные сферы радиусами r = 0.05 м и $R = \frac{3}{2}r$ имеют общий центр (см. рисунок). Внешняя сфера заземлена, а внутренней сообщили заряд $q = 6 \cdot 10^8$ Кл. Потенциал внутренней сферы равен (3,6 кВ)

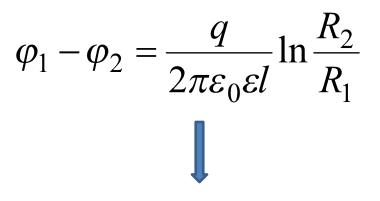
3. Две концентрические сферы имеют радиусы 8 и 10 см. Внешняя сфера заряжена, а внутренняя — электрически нейтральна. Внутреннюю сферу заземляют с помощью тонкой проволоки, проходящей через маленькое отверстие во внешней сфере. Во сколько раз при этом уменьшится потенциал внешней сферы? (4)

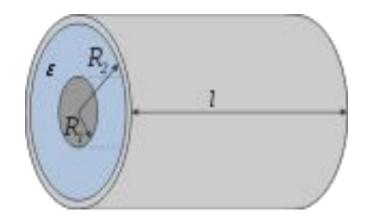

Примеры вычисления электроемкости

1. Электроемкости уединенного сферического проводника

$$\varphi = \frac{q}{4\pi\varepsilon_0 R} \longrightarrow C = 4\pi\varepsilon_0 R$$

2. Электроемкости плоского конденсатора


$$\varphi_1 - \varphi_2 = \frac{\sigma}{\varepsilon_0 \varepsilon} d = \frac{q}{\varepsilon_0 \varepsilon S} d \longrightarrow C = \frac{\varepsilon_0 \varepsilon S}{d}$$


3. Электроемкости сферического конденсатора

$$\varphi_1 - \varphi_2 = \frac{q}{4\pi\varepsilon_0\varepsilon} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \longrightarrow C = 4\pi\varepsilon_0\varepsilon \frac{R_1R_2}{R_2 - R_1}$$

4. Электроемкости цилиндрического конденсатора

$$C = \frac{4\pi\varepsilon_0\varepsilon}{\ln\frac{R_2}{R_1}}$$

4. Энергия электростатического поля

$$W = \frac{1}{2}q\phi = \frac{1}{2}C\phi^2 = \frac{1}{2C}q^2$$
 Уединенного проводника

$$W = \frac{1}{2}qU = \frac{1}{2}CU^2 = \frac{1}{2C}q^2$$
 Kondencamopa

$$W = \frac{1}{2}CU^{2} = \begin{vmatrix} C = \frac{\varepsilon\varepsilon_{0}S}{d} \\ U = Ed \end{vmatrix} = \frac{\varepsilon\varepsilon_{0}E^{2}}{2}Sd = \frac{\varepsilon\varepsilon_{0}E^{2}}{2}V$$

$$\omega = \frac{W}{V} = \frac{\varepsilon \varepsilon_0 E^2}{2} = \frac{D^2}{2\varepsilon \varepsilon_0} = \frac{ED}{2} = \frac{\left(\stackrel{\bowtie}{ED}\right)}{2} \qquad \begin{array}{c} \textbf{Объемная плотность} \\ \textbf{Энергии} \end{array}$$

$$W = \int\limits_{V} \omega(\overset{\bowtie}{r}) dV$$
 Вычисление энергии в случае неоднородного поля

4. Плоский воздушный конденсатор состоит из двух круглых пластин радиусом R=10см каждая. Расстояние между ними d=1см. Конденсатор зарядили до разности потенциалов $\Delta \phi = 1200$ В и отключили от источника напряжения. Какую работу А надо совершить, чтобы раздвинуть пластины до расстояния b=3,5 см между ними?

5. Два плоских воздушных одинаковых конденсатора соединены последовательно в батарею, которая подключена к источнику с ЭДС 12 В. определить напряжение на конденсаторах U_1 и U_2 , если отключив батарею от источника, один из конденсаторов погрузить в масло. Диэлектрическая проницаемость масла равна 5.

6. Два плоских воздушных одинаковых конденсатора емкостью C1=0,5мкФ и C2=2мкФ зарядили до разности потенциалов U_1 =200В и U_2 =300В соответственно и соединили параллельно (одноименными обкладками). Найти изменение энергии конденсаторов.