Configure a Switch **LAN Switching and Wireless – Chapter 2** #### **Objectives** - Summarize the operation of Ethernet as defined for 100/1000 Mbps LANs in the IEEE 802.3 standard. - Explain the functions that enable a switch to forward Ethernet frames in a LAN. - Configure a switch for operation in a network designed to support voice, video, and data transmissions. - Configure basic security on a switch that will operate in a network designed to support voice, video, and data transmissions. Describe the key elements of Ethernet/802.3 networks **Duplex Settings** #### Half Duplex (CSMA/CD) - Unidirectional data flow - Higher potential for collision - · Hub connectivity #### **Full Duplex** - Point-to-point only - · Attached to dedicated switched port - Requires full-duplex support on both ends - Collision-free - Collision detect circuit disabled Ports on a Cisco Catalyst 2960 Series switch can be configured with these settings: - auto option allows the two ports to communicate in order to decide the mode. - full option sets full-duplex mode. - half option sets half-duplex mode. Step 1: The switch receives a frame destined for PC2 on Port 1 from PC1. Step 2: The switch enters the source MAC address and the switch port that received the frame into the MAC table. **Step 3**: Because the destination address is a broadcast, the switch floods the frame to all ports, except the port on which it received the frame. Step 4: The destination device replies to the broadcast with a unicast frame addressed to PC 1. MAC Addressing and Switch MAC Tables Step 5: The switch enters the source MAC address of PC 2 and port number of the switch port that received the frame into the MAC table. The destination address of the frame and its associated port is found in the MAC table. MAC Addressing and Switch MAC Tables **Step 6:** The switch can now forward frames between source and destination devices without flooding, because it has entries in the MAC table that identify the associated ports. Describe the design considerations for Ethernet/802.3 networks Collision and Broadcast Domain 13 Collision and Broadcast Domain **Broadcast Domain** **Domain** Collision and Broadcast Domain Collision and Broadcast Domain Collision and Broadcast Domain Each router reduces the size of the Each switch reduces the size of broadcast domain on the LAN. the collision domain on the LAN to a single link. **S2 S3 S5 S6** Floor 2 Floor 1 Floor 3 Floor 4 Uncontrolled Collision and Controlled Collision and Broadcast **Broadcast Domain** Domain Describe the LAN design considerations to reduce network latency #### Controlling Network Latency - Consider the latency caused by each device on the network. - A core level switch supporting 48 ports, running at 1000 Mb/s full duplex requires 96 Gb/s internal throughput if it is to maintain full wirespeed across all ports simultaneously. - Higher OSI layer devices can also increase latency on a network. - A router must strip away the Layer 2 fields in a frame in order to interpret layer 3 addressing information. The extra processing time causes latency. - Balance the use of higher layer devices to reduce network latency with the need to prevent contention from broadcast traffic or the high collision rates. Server with one 1000 Mb/s NIC Server with five 1000 Mb/s NICs NIC Bandwidth of 167 Mb/s per computer NIC Bandwidth of 833 Mb/s per computer Describe the switch forwarding methods Identify Frame Forwarding Methods **Switch Packet Forwarding Methods** Store-and-forward Complete frame is received before forwarding. Cut-through The frame is forwarded through the switch before the entire frame is received. Explain symmetric and asymmetric Switching Symmetric and Asymmetric Switching Describe how memory buffering works Port-Based and Shared Memory Buffering | Port-based memory | In port-based memory buffering, frames are stored in queues that are linked to specific incoming ports. | |-------------------|---| | Shared memory | Shared memory buffering deposits all frames into a common memory buffer, which all the ports on the switch share. | Compare Layer 2 with Layer 3 switching Layer 3 Switch and Router Comparison | Feature | Layer 3 Switch | Router | |----------------------------|----------------|-----------| | Layer 3 Routing | Supported | Supported | | Traffic Management | Supported | Supported | | WIC Support | | Supported | | Advanced Routing Protocols | | Supported | | Wirespeed routing | Supported | | Describe the Cisco IOS commands used to navigate the command-line | The Command Line Interface Modes | | |--|--| | Cisco IOS CLI Command Syntax | | | Switch from privileged EXEC mode to global configuration mode | switch#configure terminal | | The (config)# prompt signifies that the switch is in global configuration mode. | switch(config)# | | Switch from global configuration mode to interface configuration mode for fast ethernet interface 0/1. | <pre>switch(config)#interface fastethernet 0/1</pre> | | The (config-if)# prompt signifies that the switch is in the interface configuration mode. | <pre>switch(config-if)#</pre> | | Switch from interface configuration mode to global configuration mode. | switch(config-if)#exit | | The (config)# prompt signifies that the switch is in global configuration mode. | switch(config)# | | Switch from global configuration mode to privileged EXEC mode. | switch(config)#exit | | The # prompt signifies that the switch is in privileged EXEC mode. | switch# | #### Describe the Cisco IOS help facilities | Cisco Switch Command Syntax | | |--|--| | Example of command prompting. In this example, the help function provides a list of commands available in the current mode that start with cl. | switch#cl?
clear clock | | Example of incomplete command. | switch#clock % Incomplete command. | | Example of symbolic translation. | % Unknown command or computer
name, or unable to find computer
address | | Example of command prompting. Notice the space? In this example, the
help function provides a list of subcommands associated with the clock
command. | switch#clock ? set Set the time and date | | In this example, the help function provides a list of command arguments required with the clock set command. | switch#clock set ? hh:mm:ss Current Time | | Example Error Message | Meaning | How to Get Help | |---|---|--| | switch# cl
% Ambiguous command:
"cl" | You did not enter enough
characters for your device to
recognize the command. | Re-enter the command followed by a question mark (?), without a space between the command and the question mark. The possible keywords that you can enter with the command are displayed. | | switch#clock
% Incomplete command. | You did not enter all the keywords
or values required by this
command. | Re-enter the command followed by a question
mark (?), with a space between the command
and the question mark. | | switch#clock set
aa:12:23
^
% Invalid input
detected at '^' | You entered the command incorrectly. The caret (^) marks the point of the error. | Enter a question mark (?) to display all of the commands or parameters that are available. | Describe the Cisco IOS commands used to access the command history Configure the Command History buffer | Cisco IOS CLI Command Syntax | | |--|--| | Enable terminal history. This command can be run from either user or privileged EXEC mode. | switch#terminal history | | Configures the terminal history size. The terminal history can maintain 0 to 256 command lines. | switch#terminal history size 50 | | Resets the terminal history size to the default value of 10 command lines. | <pre>switch#terminal no history size</pre> | | Disables terminal history. | switch#terminal no history | Describe the boot sequence of a Cisco switch #### Describe the Boot Sequence The boot sequence of a Cisco switch: - -The switch loads the boot loader software from NVRAM. - -The boot loader: - Performs low-level CPU initialization. - Performs POST for the CPU subsystem. - Initializes the flash file system on the system board. - Loads a default operating system software image into memory and boots the switch. - -The operating system runs using the config.text file, stored in the switch flash storage. The boot loader can help you recover from an operating system crash: - -Provides access into the switch if the operating system has problems serious enough that it cannot be used. - -Provides access to the files stored on flash before the operating system is loaded. - -Use the boot loader command line to perform recovery operations. Describe how to prepare the switch to be configured Describe how to perform a basic switch configuration Create another VLAN, for example VLAN 99 or VLAN 150 Assign that VLAN to an appropriate port, for example F0/18 Describe how to verify the Cisco IOS configuration using the Show command | Using the Show Comma | ands | |---|----------------------------------| | Cisco IOS CLI Command Syntax | | | Displays interface status and configuration for a single or all interfaces available on the switch. | show interfaces [interface-id] | | Displays contents of startup configuration. | show startup-config | | Displays current operating configuration. | show running-config | | Displays information about flash: file system. | show flash: | | Displays system hardware and software status. | show version | | Display the session command history. | show history | | Displays IP information. The interface option displays IP interface status and configuration. The http option displays HTTP information about device manager running on the switch. The arp option displays the IP ARP table. | show ip {interface http arp} | | Displays the MAC forwarding table. | show mac-address-table | Describe how to manage the Cisco IOS configuration files #### Backup and Restore Switch Configurations | Cisco IOS CLI Command Syntax | | |---|---| | Formal version of Cisco IOS copy command. Confirm the destination file name. Press the Enter key to accept and use the Crtl+C key combination to cancel. | S1#copy system:running-config flash:startup-config Destination filename [startup-config]? | | Informal version of the copy command. The assumptions are that the running-config is running on the system and that the startup-config file that will be stored in flash NVRAM. Press the Enter key to accept and use the Crtl+C key combination to cancel. | Sl#copy running-config startup-config Destination filename [startup-config]? | | Backup the startup-config to a file stored in flash NVRAM. Confirm the destination file name. Press the Enter key to accept and use the Crtl+C key combination to cancel. | S1#copy startup-config flash:config.bak1 Destination filename [config.bak1]? | Describe the Cisco IOS commands used to configure password options Configure EXEC Mode Passwords | Cisco IOS CLI Command Syntax | | |---|-------------------------------------| | Switch from privileged EXEC mode to global configuration mode. | S1#configure terminal | | Configures the enable password to enter privileged EXEC mode. | S1(config)#enable password password | | Configures the enable secret password to enter privileged EXEC mode. | S1(config)#enable secret password | | Exit from line configuration mode and return to privileged EXEC mode. | S1(config)#end | Describe the Cisco IOS commands used to configure a login banner Configure a Login Banner Configure a MOTD Banner | Cisco IOS CLI Command Syntax | | |--|--| | Switch from privileged EXEC mode to global configuration mode. | S1#configure terminal | | Configure a login banner. | S1(config)#banner login "Authorized Personnel Only!" | | Cisco IOS CLI Command Syntax | | |--|--| | Switch from privileged EXEC mode to global configuration mode. | S1#configure terminal | | Configure a MOTD login banner. | S1(config)#banner motd "Device maintenance will be occurring on Friday!" | Describe the how to configure Telnet and SSH on a switch #### Telnet and SSH #### Telnet - Most common access method - -Sends clear text message streams - -Is not secure #### SSH - -Should be the common access method - Sends encrypted message stream - -Is secure Configuring SSH Describe the key switch security attacks. The description should include, MAC address flooding, spoofing attacks, CDP attacks, and Telnet attacks Describe how network security tools are used to improve network security #### Security Tools Network Security Tools perform these functions: - -Network Security Audits help you to - Reveal what sort of information an attacker can gather simply by monitoring network traffic. - Determine the ideal amount of spoofed MAC addresses to remove. - Determine the age-out period of the MAC Address table. - -Network Penetration Testing helps you to - Identify weaknesses within the configuration of your networking devices. - Launch numerous attacks to test your network. - Caution: Plan penetration tests to avoid network performance impacts. Describe why you need to secure ports on a switch #### Network Security Tools Features Common features of a modern network security tool include: - -Service Identification - -Support of SSL Services - -Non-destructive and Destructive Testing - -Database of Vulnerabilities You can use network security tools to: - -Capture chat messages - -Capture files from NFS traffic - -Capture HTTP requests in Common Log Format - -Capture mail messages in Berkeley mbox format - -Capture passwords - -Display capture URLs in Netscape in real-time - -Flood a switched LAN with random MAC addresses - -Forge replies to DNS address and pointer queries - -Intercept packets on a switched LAN Describe the Cisco IOS commands used to disable unused ports | Port Security Defaults | | | |--|---|--| | Feature | Default Setting | | | Port security | Disabled on a port. | | | Maximum number of secure MAC addresses | 1 | | | Violation mode | Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded, and an SNMP trap notification is sent. | | | Sticky address learning | Disabled. | | LAN Design Process that explains how a LAN is to be implemented Factors to consider in LAN design include Collision domains **Broadcast domains** Network latency LAN segmentation Switch forwarding methods Store & forward – used by Cisco Catalyst switches Cut through – 2 types Cut through Fast forwarding Symmetric switching Switching is conducted between ports that have the same bandwidth Asymmetric switching Switching is conducted between ports that have unlike bandwidth - CISCO IOS CLI includes the following features Built in help Command history/options - Switch security Password protection Use of SSH for remote access Port security